SELF-ORTHOGONAL LATIN SQUARES OF ALL ORDERS N NOT EQUAL 2,3,6

被引:46
|
作者
BRAYTON, RK
COPPERSM.D
HOFFMAN, AJ
机构
[1] IBM CORP,TJ WATSON RES CTR,YORKTOWN HEIGHTS,NY 10598
[2] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
10.1090/S0002-9904-1974-13379-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:116 / 118
页数:3
相关论文
共 50 条
  • [1] SELF-ORTHOGONAL LATIN SQUARES
    BRAYTON, RK
    COPPERSM.D
    HOFFMAN, AJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A513 - A513
  • [2] Self-Orthogonal Latin Squares and Room Squares
    Lamken, Esther R.
    [J]. NEW ADVANCES IN DESIGNS, CODES AND CRYPTOGRAPHY, NADCC 2022, 2024, 86 : 305 - 316
  • [3] Latin squares with self-orthogonal conjugates
    Bennett, FE
    Zhang, HT
    [J]. DISCRETE MATHEMATICS, 2004, 284 (1-3) : 45 - 55
  • [4] INCOMPLETE SELF-ORTHOGONAL LATIN SQUARES
    HEINRICH, K
    ZHU, L
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 42 : 365 - 384
  • [5] Complete sets of orthogonal, self-orthogonal Latin squares
    Graham, GP
    Roberts, CE
    [J]. ARS COMBINATORIA, 2002, 64 : 193 - 198
  • [6] Holey self-orthogonal Latin squares with symmetric orthogonal mates
    F. E. Bennett
    H. Zhang
    L. Zhu
    [J]. Annals of Combinatorics, 1997, 1 (1) : 107 - 118
  • [7] INCOMPLETE SELF-ORTHOGONAL LATIN SQUARES ISOLS(6M + 6, 2M) EXIST FOR ALL M
    HEINRICH, K
    WU, LS
    ZHU, L
    [J]. DISCRETE MATHEMATICS, 1991, 87 (03) : 281 - 290
  • [8] Enumeration of isomorphism classes of self-orthogonal Latin squares
    Burger, A. P.
    Kidd, M. P.
    van Vuuren, J. H.
    [J]. ARS COMBINATORIA, 2010, 97 : 143 - 152
  • [9] Existence of self-conjugate self-orthogonal diagonal Latin squares
    Bennett, FE
    Du, B
    Zhang, H
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 1998, 6 (01) : 51 - 62
  • [10] Existence of strong symmetric self-orthogonal diagonal Latin squares
    Cao, H.
    Li, W.
    [J]. DISCRETE MATHEMATICS, 2011, 311 (10-11) : 841 - 843