EXACT TRAVELING WAVES SOLUTIONS FOR LONG WAVES AND BLOW-UP PHENOMENA

被引:0
|
作者
Carvajal, X. [1 ]
Gamboa, P.
Vera, O. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Ave Athos da Silveira Ramos POB 68530, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] Univ Bio Bio, Dept Matemat, Collao 1202,Casilla 5-C, Concepcion, Chile
来源
关键词
D O I
10.7153/dea-08-32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we find exact traveling waves solutions to the fifth-order KDV- BBM type model that appear to describe the propagation of long waves in shallow water. We study the possibility of blow-up phenomenon of the fifth-order KDV-BBM type model under certain restrictions on the coefficients. Moreover, by applying the Ince transformation we also establish exact traveling waves solutions to the nonlinear evolution equation Benney- Lin type.
引用
收藏
页码:557 / 573
页数:17
相关论文
共 50 条
  • [1] Comparison between model equations for long waves and blow-up phenomena
    Carvajal, X.
    Panthee, M.
    Scialom, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (01) : 273 - 290
  • [2] Traveling waves, blow-up, and extinction in the Fisher-Stefan model
    McCue, Scott W.
    El-Hachem, Maud
    Simpson, Matthew J.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2022, 148 (02) : 964 - 986
  • [3] Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation
    Escher, Joachim
    Liu, Yue
    Yin, Zhaoyang
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (01) : 87 - 117
  • [4] Exact multiplicity for boundary blow-up solutions
    Guo, Zongming
    Zhou, Feng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) : 486 - 506
  • [5] On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
    Adrian Constantin
    Joachim Escher
    [J]. Mathematische Zeitschrift, 2000, 233 : 75 - 91
  • [6] On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
    Constantin, A
    Escher, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (01) : 75 - 91
  • [7] Blow-up of ion acoustic waves in a plasma
    Korpusov, M. O.
    [J]. SBORNIK MATHEMATICS, 2011, 202 (01) : 35 - 60
  • [8] Symmetries, periodic plane waves and blow-up of λ-ω systems
    Romero, JL
    Gandarias, ML
    Medina, E
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 147 (3-4) : 259 - 272
  • [9] On the distance to blow-up of acceleration waves in random media
    Martin Ostoja-Starzewski
    Jerzy Trebicki
    [J]. Continuum Mechanics and Thermodynamics, 2003, 15 : 21 - 32
  • [10] On the distance to blow-up of acceleration waves in random media
    Ostoja-Starzewski, M
    Trebicki, J
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2003, 15 (01) : 21 - 32