APPLICATIONS OF GMDH-TYPE MODELING IN MANUFACTURING

被引:6
|
作者
CHAO, PY
FERREIRA, PM
LIU, CR
机构
关键词
D O I
10.1016/0278-6125(88)90008-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:241 / 253
页数:13
相关论文
共 50 条
  • [1] GMDH-type neural network modeling in evolutionary optimization
    Kim, D
    Park, GT
    [J]. INNOVATIONS IN APPLIED ARTIFICIAL INTELLIGENCE, 2005, 3533 : 563 - 570
  • [2] Hybrid GMDH-type modeling for nonlinear systems: Synergism to intelligent identification
    Kim, Dongwon
    Seo, Sam-Jun
    Park, Gwi-Tae
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (10) : 1087 - 1094
  • [3] Modeling friction factor in pipeline flow using a GMDH-type neural network
    Besarati, Saeb M.
    Myers, Philip D.
    Covey, David C.
    Jamali, Ali
    [J]. COGENT ENGINEERING, 2015, 2 (01):
  • [4] Robust structural modeling and outlier detection with GMDH-type polynomial neural networks
    Aksenova, T
    Volkovich, V
    Villa, AEP
    [J]. ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 881 - 886
  • [5] Transfer Learning in GMDH-Type Neural Networks
    Abdullahi, Aminu
    Akter, Mukti
    [J]. MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, 2019, 833 : 161 - 169
  • [6] Revised GMDH-type neural networks using PSS criterion
    Kondo, T
    [J]. 2004 47TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, CONFERENCE PROCEEDINGS, 2004, : 81 - 84
  • [7] Modeling of deviation angle and performance losses in wet steam turbines using GMDH-type neural networks
    Hamed Bagheri-Esfe
    Hamed Safikhani
    [J]. Neural Computing and Applications, 2017, 28 : 489 - 501
  • [8] Modeling gas/vapor viscosity of hydrocarbon fluids using a hybrid GMDH-type neural network system
    Dargahi-Zarandi, Atefeh
    Hemmati-Sarapardeh, Abdolhossein
    Hajirezaie, Sassan
    Dabir, Bahram
    Atashrouz, Saeid
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2017, 236 : 162 - 171
  • [9] GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network Algorithms
    Dag, Osman
    Yozgatligil, Ceylan
    [J]. R JOURNAL, 2016, 8 (01): : 379 - 386
  • [10] Modeling of deviation angle and performance losses in wet steam turbines using GMDH-type neural networks
    Bagheri-Esfe, Hamed
    Safikhani, Hamed
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S489 - S501