Numerical modelling of nonlinear electromechanical coupling of an atomic force microscope with finite element method

被引:1
|
作者
Freitag, J. [1 ]
Mathis, W. [1 ]
机构
[1] Inst Theoret Elektrotech, Appelst 9A, D-30167 Hannover, Germany
关键词
D O I
10.5194/ars-8-33-2010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this contribution, an atomic force microscope is modelled and in this context, a non-linear coupled 3-D boundary value problem is solved numerically using the finite element method. The coupling of this system is done by using the Maxwell stress tensor. In general, an iterative weak coupling is used, where the two physical problems are solved separately. However, this method does not necessarily guarantee convergence of the nonlinear computation. Hence, this contribution shows the possibility of solving the multiphysical problem by a strong coupling, which is also referred to as monolithic approach The electrostatic field and the mechanical displacements are calculated simultaneously by solving only one system of equation. Since the Maxwell stress tensor depends nonlinearly on the potential, the solution is solved iteratively by the Newton method.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 50 条
  • [1] Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method
    Wang, Lili
    Wang, Li
    Xu, Limeng
    Chen, Weiyi
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
  • [2] Finite element simulations of nonlinear vibrations of atomic force microscope cantilevers
    Shen, KZ
    Turner, JA
    [J]. NONDESTRUCTIVE EVALUATION AND RELIABILITY OF MICRO-AND NANOMATERIAL SYSTEMS, 2002, 4703 : 93 - 104
  • [3] Surface Electromechanical Coupling on DLC Film with Conductive Atomic Force Microscope
    朱守星
    丁建宁
    范真
    李长生
    蔡兰
    杨继昌
    [J]. Plasma Science and Technology, 2004, (03) : 2342 - 2345
  • [4] Strong Electromechanical Coupling of an Atomic Force Microscope Cantilever to a Quantum Dot\
    Bennett, Steven D.
    Cockins, Lynda
    Miyahara, Yoichi
    Gruetter, Peter
    Clerk, Aashish A.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (01)
  • [5] Surface electromechanical coupling on DLC film with conductive atomic force microscope
    Zhu, SX
    Ding, JN
    Fan, Z
    Li, CS
    Cai, L
    Yang, JC
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2004, 6 (03) : 2342 - 2345
  • [6] Finite element modelling of atomic force microscope cantilever beams with uncertainty in material and dimensional parameters
    Wang, Bin
    Wu, Xiao
    Gan, Tat-Hean
    Rusinek, Alexis
    [J]. Engineering Transactions, 2014, 62 (04): : 403 - 421
  • [7] Extended finite element for electromechanical coupling
    Rochus, Veronique
    Rixen, Daniel
    [J]. EUROSIME 2007: THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICRO-ELECTRONICS AND MICRO-SYSTEMS, PROCEEDINGS, 2007, : 42 - +
  • [8] A correction of geometric error of nano-indenter using atomic force microscope and finite element method
    Baek, Seung
    Cho, Sung-Kuen
    Seok, Chang-Sung
    [J]. ADVANCED NONDESTRUCTUVE EVALUATION I, PTS 1 AND 2, PROCEEDINGS, 2006, 321-323 : 129 - 131
  • [9] Finite element modelling of atomic force microscopy imaging on deformable surfaces
    Giblin-Burnham, Joshua
    Javanmardi, Yousef
    Moeendarbary, Emad
    Hoogenboom, Bart W.
    [J]. Soft Matter, 2024, 20 (47) : 9483 - 9492
  • [10] Electromechanical impedance-based prestress force prediction method using resonant frequency shifts and finite element modelling
    Nguyen, Thanh-Truong
    Ho, Duc-Duy
    Huynh, Thanh-Canh
    [J]. DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2022, 12