Modern perspectives on statistics for spatio-temporal data

被引:43
|
作者
Wikle, Christopher K. [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
bayesian hierarchical models; rank reduction; spatial basis functions; spatio-temporal dynamic models; quadratic nonlinearity;
D O I
10.1002/wics.1341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially explicit processes that evolve over time. Although descriptive models that approach this problem from the second-order (covariance) perspective are important, many real-world processes are dynamic, and it can be more efficient in such cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The challenge with the specification of such dynamical models has been related to the curse of dimensionality and the specification of realistic dependence structures. Even in fairly simple linear/Gaussian settings, spatio-temporal statistical models are often over parameterized. This problem is compounded when the spatio-temporal dynamical processes are nonlinear or multivariate. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters and science-based parameterizations. Such models are best considered from a Bayesian perspective, with associated computational challenges. Spatio-temporal statistics remains an active and vibrant area of research. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:86 / 98
页数:13
相关论文
共 50 条
  • [1] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [2] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [3] Spatio-temporal statistics with R
    Peterson, Adam
    [J]. BIOMETRICS, 2019, 75 (04) : 1414 - 1414
  • [4] Symbol statistics and spatio-temporal systems
    Tang, XZ
    Tracy, ER
    Brown, R
    [J]. PHYSICA D, 1997, 102 (3-4): : 253 - 261
  • [5] Spatio-Temporal Statistics With R.
    Bussberg, Nicholas W.
    [J]. AMERICAN STATISTICIAN, 2021, 75 (01): : 114 - 114
  • [6] Spatio-temporal anisotropies in summary statistics
    Tiurina, Natalia
    Markov, Yuri
    Whitney, David
    Pascucci, David
    [J]. PERCEPTION, 2022, 51 : 83 - 83
  • [7] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [8] Discovery of anomalous spatio-temporal windows using discretized spatio-temporal scan statistics
    Janeja, Vandana P.
    Gangopadhyay, Aryya
    Mohammadi, Seyed
    Palanisamy, Revathi
    [J]. Statistical Analysis and Data Mining, 2011, 4 (03): : 276 - 300
  • [9] Weather extremes : A spatio-temporal perspectives
    Rathore, L. S.
    Pattanaik, D. R.
    Bran, S. C.
    [J]. MAUSAM, 2016, 67 (01): : 27 - 52
  • [10] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190