THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES

被引:6
|
作者
URRUTIA, LF
MORALES, N
机构
[1] CTR ESTUDIOS CIENTI FICOS SANTIAGO,CASILLA 16443,SANTIAGO 9,CHILE
[2] UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT MATEMAT,MEXICO CITY 09340,DF,MEXICO
来源
关键词
D O I
10.1088/0305-4470/27/6/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the expression for the superdeterminant of (xI - M), where M is an arbitrary supermatrix, we propose a definition for the corresponding characteristic polynomial and we prove that each supermatrix satisfies its characteristic equation. Depending upon the factorization properties of the basic polynomials whose ratio defines the above mentioned superdeterminant we are able to construct polynomials of lower degree which are also shown to be annihilated by the supermatrix. Some particular cases and examples are discussed.
引用
收藏
页码:1981 / 1997
页数:17
相关论文
共 50 条
  • [1] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : L441 - L447
  • [2] AN EXTENSION OF THE CAYLEY-HAMILTON THEOREM TO THE CASE OF SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (03) : 211 - 219
  • [3] CAYLEY-HAMILTON THEOREM
    MCCARTHY, CA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 390 - 391
  • [4] A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM
    CHICONE, C
    KALTON, NJ
    PAPICK, IJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02): : 134 - 136
  • [5] The quantum Cayley-Hamilton theorem
    Zhang, JJ
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (01) : 101 - 109
  • [6] A Generalization of the Cayley-Hamilton Theorem
    Chen, Lizhou
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (04): : 340 - 342
  • [7] NOTE ON THE CAYLEY-HAMILTON THEOREM
    GREENBERG, MJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (03): : 193 - 195
  • [8] A generalized Cayley-Hamilton theorem
    Feng, Lianggui
    Tan, Haijun
    Zhao, Kaiming
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2440 - 2445
  • [9] A Proof of the Cayley-Hamilton Theorem
    Bernhardt, Chris
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05): : 456 - 457
  • [10] DIRECT PROOF OF CAYLEY-HAMILTON THEOREM
    LOVELOCK, D
    [J]. MATRIX AND TENSOR QUARTERLY, 1971, 21 (03): : 84 - &