A bound is obtained which generalizes the Carlitz-Uchiyama result, based on a theorem of Bombieri and Weil about exponential sums. This new bound is used to estimate the covering radius of long binary Goppa codes. A new lower bound is also derived on the minimum distance of the dual of a binary Goppa code, similar to that for BCH codes. This is an example of the use of a number-theory bound for the problem of the estimation of minimum distance of codes, as posed in research problem 9.9 of MacWilliams and Sloane, The Theory of Error Correcting Codes.