TRANSGRESSION OF THE EULER CLASS OF SL(2N, Z)-VECTOR BUNDLES, ADIABATIC LIMITS OF ETA INVARIANTS, AND SPECIAL VALUES OF L-FUNCTIONS

被引:0
|
作者
BISMUT, JM [1 ]
CHEEGER, J [1 ]
机构
[1] COURANT INST MATH,NEW YORK,NY 10012
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we announce a refinement of a result of Sullivan, who showed that the Euler class of a SL (2n, Z)-vector bundle vanishes rationally, by an explicit transgression of the differential form representing the Euler Class. The transgression is used to calculate the adiabatic limit of the eta invariant of torus bundles. As an application, we obtain a new proof of the Hirzebruch conjecture on the signature of the Hilbert modular varieties.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 5 条