FENG AND LIU TYPE F-CONTRACTION IN B-METRIC SPACES WITH AN APPLICATION TO INTEGRAL EQUATIONS

被引:0
|
作者
Kamran, Tayyab [1 ,2 ]
Postolache, Mihai [3 ,4 ]
Ali, Muhammad Usman [5 ]
Kiran, Quanita [6 ]
机构
[1] Natl Univ Sci & Technol H12, Dept Math, Sch Nat Sci, Islamabad, Pakistan
[2] Quaid I Azam Univ, Dept Math, Islamabad, Pakistan
[3] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan
[4] Univ Polytehn Bucharest, Dept Math & Comp Sci, Bucharest 060042, Romania
[5] Women Univ Azad Jammu & Kashmir, Dept Math, Bagh, Pakistan
[6] Natl Univ Sci & Technol H12, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
来源
JOURNAL OF MATHEMATICAL ANALYSIS | 2016年 / 7卷 / 05期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cosentino et al. introduced F-contractions in the setting of b-metric space and proved a fixed point theorem. In this paper, we generalize the result of Cosentino et al. by introducing Feng and Liu type F-contractions. Example and some applications to Fredholm integral equations are constructed to show the significance of our result.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
  • [1] On Convex F-Contraction in b-Metric Spaces
    Huang, Huaping
    Mitrovic, Zoran D.
    Zoto, Kastriot
    Radenovic, Stojan
    AXIOMS, 2021, 10 (02)
  • [2] Feng-Liu-type fixed point result in orbital b-metric spaces and application to fractal integral equation
    Nashine, Hemant Kumar
    Dey, Lakshmi Kanta
    Ibrahim, Rabha W.
    Radenovic, Stojan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (03): : 522 - 533
  • [3] SOLVING EXISTENCE PROBLEMS VIA F-CONTRACTION IN MODIFIED b-METRIC SPACES
    Karapinar, E.
    Sedghi, S.
    Shobe, N.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (04): : 1526 - 1535
  • [4] Improvement of fixed point theorems for Hardy–Rogers contraction type in b-metric spaces without F-contraction assumption
    Radhowane Chaib
    Fayçel Merghadi
    Zahir Mouhoubi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 4209 - 4237
  • [5] Geraghty Type Contractions in Fuzzy b-metric Spaces with Application to Integral Equations
    Ashraf, Muhammad Sohail
    Ali, Rashid
    Hussain, Nawab
    FILOMAT, 2020, 34 (09) : 3083 - 3098
  • [6] Common Fixed Points of Four Maps Satisfying F-Contraction on b-Metric Spaces
    Nazam, Muhammad
    Ma Zhenhua
    Khan, Sami Ullah
    Arshad, Muhammad
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [7] Improvement of fixed point theorems for Hardy-Rogers contraction type in b-metric spaces without F-contraction assumption
    Chaib, Radhowane
    Merghadi, Faycel
    Mouhoubi, Zahir
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 4209 - 4237
  • [8] Existence of solutions for boundary value problems and nonlinear matrix equations via F-contraction mappings in b-metric spaces
    Mebawondu, Akindele Adebayo
    Izuchukwu, Chinedu
    Ogwo, Grace Nnennaya
    Mewomo, Oluwatosin Temitope
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (11)
  • [9] Fuzzy Fixed Point Theorems for Multivalued Fuzzy F-Contraction Mappings in b-Metric Spaces
    Hunwisai, Darunee
    Kumam, Poom
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (03): : 179 - 187
  • [10] F-contraction mappings on metric-like spaces in connection with integral equations on time scales
    Ravi P. Agarwal
    Ümit Aksoy
    Erdal Karapınar
    İnci M. Erhan
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114