EXPONENTIAL MEAN-SQUARE STABILITY OF PARTIALLY LINEAR STOCHASTIC-SYSTEMS

被引:5
|
作者
CHABOUR, R [1 ]
FLORCHINGER, P [1 ]
机构
[1] UNIV METZ,DEPT MATH,UFR MIM,CNRS,URA 399,F-57045 METZ,FRANCE
关键词
D O I
10.1016/0893-9659(93)90085-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to state sufficient conditions for the existence of linear feedback laws which render the equilibrium solution of a composite partially linear stochastic system (the linear part of which is deterministic) exponentially stable in mean square.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [1] The mean-square exponential stability and instability of stochastic nonholonomic systems
    Shang, M
    Guo, YX
    [J]. CHINESE PHYSICS, 2001, 10 (06): : 480 - 485
  • [2] Exponential mean-square stability properties of stochastic linear multistep methods
    Evelyn Buckwar
    Raffaele D’Ambrosio
    [J]. Advances in Computational Mathematics, 2021, 47
  • [3] Exponential mean-square stability properties of stochastic linear multistep methods
    Buckwar, Evelyn
    D'Ambrosio, Raffaele
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (04)
  • [4] MEAN-SQUARE STABILIZABILITY OF A CLASS OF NONLINEAR STOCHASTIC-SYSTEMS
    YAZ, EG
    [J]. PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 2586 - 2589
  • [5] MEAN-SQUARE UNIFORM ASYMPTOTIC STABILITY OF TIME-DELAY STOCHASTIC-SYSTEMS
    FENG, ZS
    LIU, YQ
    GUO, FW
    [J]. CHINESE SCIENCE BULLETIN, 1992, 37 (17): : 1492 - 1493
  • [6] Mean-square exponential stability of stochastic Volterra systems in infinite dimensions
    Lin FU
    Shiguo PENG
    Feiqi DENG
    Quanxin ZHU
    [J]. Science China(Information Sciences), 2024, 67 (10) : 298 - 314
  • [7] Exponential mean-square stability of stochastic singular systems with Markov switching
    Jiao, Ticao
    Zheng, Wei Xing
    Zong, Guangdeng
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1570 - 1573
  • [8] Mean-square exponential stability of stochastic Volterra systems in infinite dimensions
    Fu, Lin
    Peng, Shiguo
    Deng, Feiqi
    Zhu, Quanxin
    [J]. Science China Information Sciences, 2024, 67 (10)
  • [9] Nonuniform mean-square exponential dichotomies and mean-square exponential stability
    Zhu, Hailong
    Chen, Li
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [10] Correction to: Exponential mean-square stability properties of stochastic linear multistep methods
    Evelyn Buckwar
    Raffaele D’Ambrosio
    [J]. Advances in Computational Mathematics, 2021, 47