On the semidiscrete differential geometry of A-surfaces and K-surfaces

被引:0
|
作者
Wallner, Johannes
机构
基金
奥地利科学基金会;
关键词
Semidiscrete surface; Asymptotic surface; K-surface; pseudosphere;
D O I
10.1007/s00022-012-0108-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the category of semidiscrete surfaces with one discrete and one smooth parameter we discuss the asymptotic parametrizations, their Lelieuvre vector fields, and especially the case of constant negative Gaussian curvature. In many aspects these considerations are analogous to the well known purely smooth and purely discrete cases, while in other aspects the semidiscrete case exhibits a different behaviour. One particular example is the derived T-surface, the possibility to define Gaussian curvature via the Lelieuvre normal vector field, and the use of the T-surface's regression curves in the proof that constant Gaussian curvature is characterized by the Chebyshev property. We further identify an integral of curvatures which satisfies a semidiscrete Hirota equation.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 50 条
  • [1] On the semidiscrete differential geometry of A-surfaces and K-surfaces
    Johannes Wallner
    Journal of Geometry, 2012, 103 (1) : 161 - 176
  • [2] K-SURFACES IN SCHWARZSCHILD GEOMETRY
    Faridi, Ayub
    Fazal-E-Aleem
    Rashid, Haris
    MODERN TRENDS IN PHYSICS RESEARCH, 2013, : 271 - 274
  • [3] Pointed k-surfaces
    Smith, Graham
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2006, 134 (04): : 509 - 557
  • [4] Random k-surfaces
    Labourie, F
    ANNALS OF MATHEMATICS, 2005, 161 (01) : 105 - 140
  • [5] The phase space of k-surfaces
    Labourie, F
    RIGIDITY IN DYNAMICS AND GEOMETRY: CONTRIBUTIONS FROM THE PROGRAMME ERGODIC THEORY, GEOMETRIC RIGIDITY AND NUMBER THEORY, 2002, : 301 - 307
  • [6] Parametrization of Abelian K-surfaces with quaternionic multiplication
    Guitart, Xavier
    Molina, Santiago
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1325 - 1330
  • [7] K-SURFACES AND DIFFUSE X-RAY REFLEXIONS
    PRASAD, SC
    WOOSTER, WA
    ACTA CRYSTALLOGRAPHICA, 1956, 9 (03): : 304 - 308
  • [8] On the asymptotic geometry of finite-type k-surfaces in three-dimensional hyperbolic space
    Smith, Graham
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (02) : 407 - 467
  • [9] THE DIFFERENTIAL GEOMETRY OF SURFACES
    MARCINKOWSKI, MJ
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 46 (04): : 263 - 276
  • [10] DIFFERENTIAL GEOMETRY OF SURFACES
    SVEC, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1989, 39 (02) : 303 - 322