On Newton's polynomials and some interpolation formulae

被引:0
|
作者
Lagrange, R
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:169 / 187
页数:19
相关论文
共 50 条
  • [1] NEWTON INTERPOLATION POLYNOMIALS
    HASLINGER, F
    JOURNAL OF APPROXIMATION THEORY, 1978, 22 (04) : 352 - 355
  • [2] On interpolation formulae for classes of Fourier polynomials
    Voronin, SM
    IZVESTIYA MATHEMATICS, 1997, 61 (04) : 699 - 715
  • [3] SOME FORMULAE FOR JACOBI POLYNOMIALS
    MANOCHA, HL
    SHARMA, BL
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 459 - &
  • [5] Some algebra of Newton polynomials
    Mead, DG
    Stein, SK
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (01) : 303 - 309
  • [6] SOME FORMULAE FOR GENERALIZED RICE POLYNOMIALS
    MANOCHA, HL
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 431 - &
  • [7] Linear interpolation for spatial data grid by newton polynomials
    Jiang, Yimin
    Hu, Xiaodong
    Wu, Sen
    Zhang, Ancai
    Yuan, Fei
    Liu, Lu
    Zha, Ridong
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (03): : 419 - 434
  • [8] SOME FORMULAE OF GENOCCHI POLYNOMIALS OF HIGHER ORDER
    Corcino, Cristina B.
    Canete, Joy Ann A.
    Corcino, Roberto B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2020, 11 (03): : 10 - 20
  • [9] EXPLICIT BARYCENTRIC FORMULAE FOR OSCULATORY INTERPOLATION AT ROOTS OF CLASSICAL ORTHOGONAL POLYNOMIALS
    Rutka, Przemyslaw
    Smarzewski, Ryszard
    MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2409 - 2427
  • [10] SOME PROPERTIES OF NEWTON'S METHOD FOR POLYNOMIALS WITH ALL REAL ZEROS
    Melman, A.
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (09): : 2315 - 2325