Alzheimer's disease is characterized by the extracellular deposition in the brain and its blood vessels of insoluble aggregates of the amyloid beta peptide (A beta). This peptide is derived from a large integral membrane protein, the beta-amyloid precursor protein (beta APP), by proteolytic processing. The A beta has previousIy been found only in the brains of patients with Alzheimer's disease or advanced aging. We describe here the finding that A beta is produced continuously by normal processing in tissue culture cells. A beta and closely related peptides were identified in the media of cells transfected with cDNAs coding for beta APP in a variety of cell lines and primary tissue cultured cells. The identity of these peptides was confirmed by epitope mapping and radiosequencing. Peptides of a molecular weight of similar to 3 and similar to 4 kDa are described. The 4 kDa range contains mostly the A beta and two related peptides starting N-terminal to the beginning of A beta. In the 3 kDa range, the majority of peptides start at the secretase site; in addition, two longer peptides were found starting at amino acid F-(4) and E((11)) of the A beta sequence. To identify the processing pathways which lead to the secretion of these peptides, we used a variety of drugs known to interfere with certain cell biological pathways. We conclude that lysosomes may not play a predominant role in the formation of 3 and 4 kDa peptides. We show that an acidic environment is necessary to create the N-terminus of the A beta and postulate that alternative secretory cleavage might result in the formation of the N-terminus of A beta and related peptides. This cleavage takes place either in late Golgi, at the cell-surface or in early endosomes, but not in lysosomes. The N-terminus of most of the 3 kDa peptides is created by secretory cleavage on the cell surface or within late Golgi.