GEOSTATISTICAL METHODS FOR DETECTION OF OUTLIERS IN GROUNDWATER QUALITY SPATIAL FIELDS

被引:25
|
作者
BARDOSSY, A
KUNDZEWICZ, ZW
机构
[1] Institut für Hydrologie und Wasserwirtschaft (IHW), University of Karlsruhe, Karlsruhe
关键词
D O I
10.1016/0022-1694(90)90213-H
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Detection of discordant groundwater quality observations is of primary importance. Because of the large amount of data to be analysed, methods of plausibility analysis need to be simple and not too time-consuming. Two geostatistical methods were studied, which allow the identification of outlying data points based on the pattern present in the remaining data. The two methods used, point kriging and the IRF-k method, differ in severity of assumptions. Both approaches were tested on concentration of chloride and on total hardness in groundwater and performed satisfactorily. They lend themselves well also to operational applications. © 1990.
引用
收藏
页码:343 / 359
页数:17
相关论文
共 50 条
  • [1] A geostatistical approach to spatial analysis of groundwater quality
    Chica-Olmo, M.
    Carpintero-Salvo, I.
    Garcia-Soldado, M. J.
    Luque-Espinar, J. A.
    Pardo Iguzquiza, E.
    Rigol Sanchez, J. P.
    GEOFOCUS-REVISTA INTERNACIONAL DE CIENCIA Y TECNOLOGIA DE LA INFORMACION GEOGRAFICA, 2005, (05): : 81 - 95
  • [2] Geostatistical Approach to Assessment of Spatial Distribution of Groundwater Quality
    Nas, B.
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2009, 18 (06): : 1073 - 1082
  • [3] Detection of spatial clusters and outliers in cancer rates using geostatistical filters and spatial neutral models
    Goovaerts, P
    GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, PROCEEDINGS, 2005, : 149 - 160
  • [4] Geostatistical methods in evaluating spatial variability of groundwater quality in Al-Kharj Region, Saudi Arabia
    Al-Omran A.M.
    Aly A.A.
    Al-Wabel M.I.
    Al-Shayaa M.S.
    Sallam A.S.
    Nadeem M.E.
    Al-Omran, Abdulrasoul M. (rasoul@ksu.edu.sa), 1600, Springer Verlag (07): : 4013 - 4023
  • [5] Modeling groundwater quality by using hybrid intelligent and geostatistical methods
    Maroufpoor, Saman
    Jalali, Mohammadnabi
    Nikmehr, Saman
    Shiri, Naser
    Shiri, Jalal
    Maroufpoor, Eisa
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (22) : 28183 - 28197
  • [6] Modeling groundwater quality by using hybrid intelligent and geostatistical methods
    Saman Maroufpoor
    Mohammadnabi Jalali
    Saman Nikmehr
    Naser Shiri
    Jalal Shiri
    Eisa Maroufpoor
    Environmental Science and Pollution Research, 2020, 27 : 28183 - 28197
  • [7] Application of geostatistical models to identify spatial distribution of groundwater quality parameters
    Farzaneh, Gita
    Khorasani, Nematollah
    Ghodousi, Jamal
    Panahi, Mostafa
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (24) : 36512 - 36532
  • [8] Application of geostatistical models to identify spatial distribution of groundwater quality parameters
    Gita Farzaneh
    Nematollah Khorasani
    Jamal Ghodousi
    Mostafa Panahi
    Environmental Science and Pollution Research, 2022, 29 : 36512 - 36532
  • [9] Geostatistical methods in the assessment of the spatial variability of the quality of river water
    Krasowska, Malgorzata
    Banaszuk, Piotr
    INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY SYSTEMS AND ENVIRONMENTAL ENGINEERING (ASEE17), 2017, 22
  • [10] Detecting spatial outliers using bipartite outlier detection methods
    Wei, MZ
    Sung, AH
    Cather, M
    IKE '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE ENGNINEERING, 2004, : 236 - 242