N = 2, D = 4 SUPERSYMMETRIC SIGMA-MODELS AND HAMILTONIAN-MECHANICS

被引:8
|
作者
GALPERIN, A [1 ]
OGIEVETSKY, V [1 ]
机构
[1] INT CTR THEORET PHYS,I-34136 TRIESTE,ITALY
关键词
D O I
10.1088/0264-9381/8/10/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A deep similarity is established between the Hamiltonian mechanics of point particle and supersymmetric N = 2, D = 4 sigma-models formulated within harmonic superspace. An essential part of the latter, the sphere S2, comes out as a counterpart of the role of the time variable.
引用
收藏
页码:1757 / 1763
页数:7
相关论文
共 50 条
  • [1] NEW CLASSES OF D=4, N=2 SUPERSYMMETRIC NONLINEAR SIGMA-MODELS
    SAIDI, EH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (05): : 1207 - 1222
  • [2] FINITENESS OF N=4 SUPERSYMMETRIC SIGMA-MODELS
    KOGAN, Y
    MOROZOV, A
    PERELOMOV, A
    PHYSICS LETTERS B, 1988, 202 (02) : 243 - 245
  • [3] N=2 supersymmetric sigma-models and duality
    Kuzenko, Sergei M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (01):
  • [4] N=2 supersymmetric sigma-models in AdS
    Butter, Daniel
    Kuzenko, Sergei M.
    PHYSICS LETTERS B, 2011, 703 (05) : 620 - 626
  • [5] N = 2 SUPERSYMMETRIC SIGMA-MODELS AND INFRARED DIVERGENCES
    BRADEN, HW
    JONES, DRT
    PHYSICAL REVIEW D, 1987, 35 (04): : 1519 - 1521
  • [6] On β-function of N=2 supersymmetric integrable sigma-models
    Alfimov, Mikhail
    Kalinichenko, Ivan
    Litvinov, Alexey
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05):
  • [7] A 4-LOOP DIVERGENCE IN N=2 TWISTED SUPERSYMMETRIC SIGMA-MODELS
    GRUNDBERG, J
    KARLHEDE, A
    LINDSTROM, U
    THEODORIDIS, G
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (06) : L129 - L131
  • [8] FINITENESS OF RICCI FLAT N = 2 SUPERSYMMETRIC SIGMA-MODELS
    ALVAREZGAUME, L
    COLEMAN, S
    GINSPARG, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) : 423 - 430
  • [9] SUPERCONFORMAL INVARIANCE OF THE N = (4,0) SUPERSYMMETRIC SIGMA-MODELS
    BECCHI, C
    PIGUET, O
    NUCLEAR PHYSICS B, 1990, 347 (03) : 596 - 624
  • [10] 4-DIMENSIONAL SUPERSYMMETRIC SIGMA-MODELS
    ELLWANGER, U
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1988, 36 (12): : 881 - 904