OFFLINE ALGORITHMS FOR DYNAMIC MINIMUM SPANNING TREE PROBLEMS

被引:0
|
作者
EPPSTEIN, D
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe an efficient algorithm for maintaining a minimum spanning tree (MST) in a graph subject to a sequence of edge weight modifications. The sequence of minimum spanning trees is computed offline, after the sequence of modifications is known. The algorithm performs O(log n) work per modification, where n is the number of vertices in the graph. We use our techniques to solve the offline geometric MST problem for a planar point set subject to insertions and deletions; our algorithm for this problem performs O(log2 n) work per modification. No previous dynamic geometric MST algorithm was known.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [1] OFFLINE ALGORITHMS FOR DYNAMIC MINIMUM SPANNING TREE PROBLEMS
    EPPSTEIN, D
    [J]. JOURNAL OF ALGORITHMS, 1994, 17 (02) : 237 - 250
  • [2] A comparison of encodings and algorithms for multiobjective minimum spanning tree problems
    Knowles, JD
    Corne, DW
    [J]. PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 544 - 551
  • [3] Experimental analysis of dynamic minimum spanning tree algorithms (extended abstract)
    Amato, G
    Cattaneo, G
    Italiano, GF
    [J]. PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 314 - 323
  • [4] Optimal algorithms for the single and multiple vertex updating problems of a minimum spanning tree
    Johnson, D.B.
    Metaxas, P.
    [J]. Algorithmica (New York), 1996, 16 (06):
  • [5] Algorithms for computing the Folk rule in minimum cost spanning tree problems with groups
    Lorenzo-Freire, S.
    Gonzalez-Maestro, A.
    Alonso-Meijide, J. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 338 : 113 - 124
  • [6] Optimal algorithms for the single and multiple vertex updating problems of a minimum spanning tree
    Johnson, DB
    Metaxas, P
    [J]. ALGORITHMICA, 1996, 16 (06) : 633 - 648
  • [7] COMPUTATIONAL EXPERIENCE WITH MINIMUM SPANNING TREE ALGORITHMS
    JARVIS, JP
    WHITED, DE
    [J]. OPERATIONS RESEARCH LETTERS, 1983, 2 (01) : 36 - 41
  • [8] COMPUTATIONAL METHODS FOR MINIMUM SPANNING TREE ALGORITHMS
    HAYMOND, RE
    JARVIS, JP
    SHIER, DR
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01): : 157 - 174
  • [9] How Informative are Minimum Spanning Tree Algorithms?
    Gronskiy, Alexey
    Buhmann, Joachim M.
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2277 - 2281
  • [10] Decomposable algorithms for computing minimum spanning tree
    Khedr, A
    Bhatnagar, R
    [J]. DISTRIBUTED COMPUTING: IWDC 2003, 2003, 2918 : 33 - 44