INTERPOLATION OF WEIGHTED AND VECTOR-VALUED HARDY-SPACES

被引:13
|
作者
KISLIAKOV, SV
XU, QH
机构
[1] STEKLOV MATH INST,ST PETERSBURG 191011,RUSSIA
[2] UNIV SCI & TECHN LILLE FLANDRES ARTOIS,CNRS,URA D75,UFR MATH PURES & APPL,F-59655 VILLENEUVE DASCQ,FRANCE
关键词
INTERPOLATION; HARDY SPACE; BANACH LATTICE; AP-WEIGHT; HILBERT TRANSFORM; BMO;
D O I
10.2307/2154519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Real and complex interpolation methods, when applied to the couple (H(p0)(E0 ; w0), H(p1)(E1 ; w1)) , give what is expected if E0 and E1 are quasi-Banach lattices of measurable functions satisfying certain mild conditions and if log(w0(1/p0) w1(-1/p1)) is-an-element-of BMO (w0, w1 being weights on the unit circle). The last condition is in fact necessary. (It is expected, of course, that the resulting spaces coincide with the subspaces of analytic functions in the corresponding interpolation spaces for the couple (LP0 (E0 ; w0), LP, (E1 ; w1)).)
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条