SCHWINGER-DYSON BRST SYMMETRY AND THE EQUIVALENCE OF HAMILTONIAN AND LAGRANGIAN QUANTIZATION

被引:13
|
作者
DEJONGHE, F [1 ]
机构
[1] CERN, CH-1211 GENEVA 23, SWITZERLAND
关键词
D O I
10.1016/0370-2693(93)91035-L
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Implementing the requirement that a field theory be invariant under Schwinger-Dyson BRST symmetry in the Hamiltonian formalism, we show the equivalence between Hamiltonian and Lagrangian BRST formalism at the path integral level. The Lagrangian quantum master equation is derived as a direct consequence of the Fradkin-Vilkovisky theorem in Hamiltonian BRST quantisation.
引用
收藏
页码:503 / 509
页数:7
相关论文
共 50 条
  • [1] SYMMETRY OF HOMOGENEOUS SCHWINGER-DYSON EQUATIONS
    KONOPELCHENKO, BG
    [J]. LETTERE AL NUOVO CIMENTO, 1974, 11 (04): : 271 - 274
  • [2] The equivalence between the Lagrangian and the Hamiltonian formalisms for the extended BRST symmetry
    Constantinescu, R
    Ionescu, C
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (07): : 1567 - 1575
  • [3] Schwinger-Dyson equation for non-Lagrangian field theory
    Lyakhovich, SL
    Sharapov, AA
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (02):
  • [4] Hamiltonian and Lagrangian BRST Quantization in Riemann Manifold
    Pandey, Vipul Kumar
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2022, 2022
  • [5] EQUIVALENCE OF LAGRANGIAN AND HAMILTONIAN BRST QUANTIZATION - SYSTEMS WITH 1ST-CLASS CONSTRAINTS
    GRIGORYAN, GV
    GRIGORYAN, RP
    TYUTIN, IV
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1991, 53 (06): : 1058 - 1061
  • [6] EQUIVALENCE BETWEEN LAGRANGIAN AND HAMILTONIAN BRST FORMALISMS
    NIROV, KS
    RAZUMOV, AV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (09) : 3933 - 3953
  • [7] Condition on the symmetry-breaking solution of the Schwinger-Dyson equation
    Cheng, G
    Kuo, TK
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) : 6119 - 6125
  • [8] From stochastic quantization to bulk quantization: Schwinger-Dyson equations and S-matrix
    Baulieu, L
    Zwanziger, D
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08):
  • [9] Schwinger-Dyson equations and disorder
    Szczepaniak, Adam P.
    Reinhardt, Hugo
    [J]. PHYSICAL REVIEW D, 2011, 84 (05):
  • [10] Schwinger-Dyson renormalization group
    Veschgini, Kambis
    Salmhofer, Manfred
    [J]. PHYSICAL REVIEW B, 2013, 88 (15):