A Generalization of Stirling Numbers of the Second Kind via a Special Multiset

被引:1
|
作者
Griffiths, Martin [1 ]
Mezo, Istvan [2 ]
机构
[1] Univ Manchester, Sch Educ Math, Manchester M13 9PL, Lancs, England
[2] Univ Devrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4010 Debrecen, Hungary
关键词
D O I
10.2.5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stirling numbers of the second kind and Bell numbers are intimately linked through the roles they play in enumerating partitions of n-sets. In a previous article we studied a generalization of the Bell numbers that arose on analyzing partitions of a special multiset. It is only natural, therefore, next to examine the corresponding situation for Stirling numbers of the second kind. In this paper we derive generating functions, formulae and interesting properties of these numbers.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A probabilistic generalization of the Stirling numbers of the second kind
    Adell, Jose A.
    Lekuona, Alberto
    [J]. JOURNAL OF NUMBER THEORY, 2019, 194 : 335 - 355
  • [2] A combinatorial generalization of the stirling numbers of the second kind
    Cernuschi-Frías, B
    [J]. ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 593 - 596
  • [3] A generalization of a binomial sum for the Stirling numbers of the second kind
    Gonzalez, Luis
    Santana, Angelo
    [J]. ARS COMBINATORIA, 2015, 118 : 305 - 313
  • [4] Stirling Numbers of the Second Kind
    Pak, Karol
    [J]. FORMALIZED MATHEMATICS, 2005, 13 (02): : 337 - 345
  • [5] Sum of powers of the natural numbers via Stirling numbers of the second kind
    AlAhmad, Rami
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1271 - 1278
  • [6] ON THE NUMBERS RELATED TO THE STIRLING NUMBERS OF THE SECOND KIND
    Cakic, Nenad P.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2007, 22 (02): : 105 - 108
  • [7] GENERALIZATION OF DIFFERENCE EQUATIONS OF STIRLING NUMBERS OF SECOND KIND AND SOME PROBLEMS ASSOCIATED WITH IT
    BACH, G
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1968, 233 : 213 - &
  • [8] A note on Stirling numbers of the second kind
    Cakic, NP
    [J]. FIBONACCI QUARTERLY, 1998, 36 (03): : 204 - 205
  • [9] ASYMPTOTICS OF STIRLING NUMBERS OF SECOND KIND
    BLEICK, WE
    WANG, PCC
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A38 - A38
  • [10] Congruences for Stirling Numbers of the Second Kind
    Chan, O-Yeat
    Manna, Dante
    [J]. GEMS IN EXPERIMENTAL MATHEMATICS, 2010, 517 : 97 - 111