WHEN SEMICRITICAL RINGS ARE SEMIPRIME

被引:0
|
作者
BOYLE, AK
TUCCI, RP
机构
[1] UNIV WISCONSIN, MILWAUKEE, WI 53201 USA
[2] UNIV NEW ORLEANS, NEW ORLEANS, LA 70122 USA
关键词
D O I
10.1080/00927878108822681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1747 / 1761
页数:15
相关论文
共 50 条
  • [1] On when small semiprime rings are slender
    ElBashir, R
    Kepka, T
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (05) : 1575 - 1580
  • [2] SEMICRITICAL RINGS AND THE QUOTIENT PROBLEM
    KOSLER, KA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (02): : 160 - 170
  • [3] SEMICRITICAL RINGS AND COPRIMITIVE IDEALS
    KOSLER, KA
    COMMUNICATIONS IN ALGEBRA, 1984, 12 (9-10) : 1023 - 1039
  • [4] ON RINGS OF QUOTIENTS OF SEMIPRIME Γ-RINGS
    Koc, Emine
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 397 - 414
  • [5] QUOTIENTS RINGS OF SEMIPRIME RINGS
    BEIDAR, KI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1978, (05): : 36 - 43
  • [6] On semiprime segments of rings
    Mazurek, R.
    Toerner, G.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 80 : 263 - 272
  • [7] (σ, τ)-DERIVATIONS OF SEMIPRIME RINGS
    Atteya, M. J.
    Haetinger, C.
    Rasen, D. I.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 239 - 246
  • [8] DERIVATIONS ON SEMIPRIME Γ-RINGS
    Khan, Abdul Rauf
    Javaid, Imran
    Chaudhry, Muhammad Anwar
    UTILITAS MATHEMATICA, 2013, 90 : 171 - 185
  • [9] STRONGLY SEMIPRIME RINGS
    HANDELMAN, D
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) : 115 - 122
  • [10] WEAKLY SEMIPRIME RINGS
    BACCELLA, G
    COMMUNICATIONS IN ALGEBRA, 1984, 12 (3-4) : 489 - 509