BAYESIAN JOINT ESTIMATION OF BINOMIAL PROPORTIONS

被引:0
|
作者
VIANA, MAG [1 ]
机构
[1] UNIV ILLINOIS,SCH PUBL HLTH,EPIDEMIOL & BIOSTAT PROGRAM,CHICAGO,IL 60612
来源
JOURNAL OF EDUCATIONAL STATISTICS | 1991年 / 16卷 / 04期
关键词
JOINT ESTIMATION; SHRINKAGE; BAYESIAN HYPOTHESIS TESTING; BAYES FACTOR;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页码:331 / 343
页数:13
相关论文
共 50 条
  • [1] AN ADAPTIVE BAYESIAN ANALYSIS FOR BINOMIAL PROPORTIONS
    Das, Sonali
    Das, Sourish
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2009, 43 (02) : 195 - 218
  • [2] Bayesian sample size calculation for estimation of the difference between two binomial proportions
    Pezeshk, Hamid
    Nematollahi, Nader
    Maroufy, Vahed
    Marriott, Paul
    Gittins, John
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (06) : 598 - 611
  • [3] Bayesian Sample Size Determination for Binomial Proportions
    M'Lan, Cyr E.
    Joseph, Lawrence
    Wolfson, David B.
    [J]. BAYESIAN ANALYSIS, 2008, 3 (02): : 269 - 296
  • [4] Calibrated Bayesian credible intervals for binomial proportions
    Lyles, Robert H.
    Weiss, Paul
    Waller, Lance A.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (01) : 75 - 89
  • [5] On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach
    Cameron, Ewan
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2011, 28 (02): : 128 - 139
  • [6] Improving interval estimation of binomial proportions
    Zhou, X. H.
    Li, C. M.
    Yang, Z.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1874): : 2405 - 2418
  • [7] A default Bayesian multiple comparison of two binomial proportions
    Gecili, Emrah
    Sivaganesan, Siva
    [J]. STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 517 - 529
  • [8] A Bayesian equivalency test for two independent binomial proportions
    Kawasaki, Yohei
    Shimokawa, Asanao
    Yamada, Hiroshi
    Miyaoka, Etsuo
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2016, 26 (04) : 781 - 789
  • [9] BAYESIAN ESTIMATION OF BINOMIAL PARAMETER
    DRAPER, N
    GUTTMAN, I
    [J]. TECHNOMETRICS, 1971, 13 (03) : 667 - &
  • [10] Bayesian credible intervals for binomial proportions in a single patient trial
    Oleson, Jacob J.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2010, 19 (06) : 559 - 574