Partitions according to multiplicities and part sizes

被引:0
|
作者
Archibald, Margaret [1 ]
Blecher, Aubrey [1 ]
Brennan, Charlotte [1 ]
Knopfmacher, Arnold [1 ]
Mansour, Toufik [2 ]
机构
[1] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, PO Wits, ZA-2050 Johannesburg, South Africa
[2] Univ Haifa, Dept Math, 199 Abba Khoushy Ave, IL-3498838 Haifa, Israel
来源
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the largest parts in integer partitions according to multiplicities and part sizes. Firstly we investigate various properties of the multiplicities of the largest parts. We then consider the sum of the m largest parts - first as distinct parts and then including multiplicities. Finally, we find the generating function for the sum of the m largest parts of a partition, i.e., the first m parts of a weakly decreasing sequence of parts.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 50 条
  • [1] PART SIZES OF RANDOM INTEGER PARTITIONS
    SCHMUTZ, E
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (06): : 567 - 575
  • [2] Random partitions with restricted part sizes
    Goh, William M. Y.
    Hitczenko, Pawel
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (04) : 440 - 462
  • [3] Partitions into a small number of part sizes
    Keith, William J.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 229 - 241
  • [4] Sampling part sizes of random integer partitions
    Ljuben Mutafchiev
    [J]. The Ramanujan Journal, 2015, 37 : 329 - 343
  • [5] Sampling part sizes of random integer partitions
    Mutafchiev, Ljuben
    [J]. RAMANUJAN JOURNAL, 2015, 37 (02): : 329 - 343
  • [6] On the Distribution of Multiplicities in Integer Partitions
    Ralaivaosaona, Dimbinaina
    [J]. ANNALS OF COMBINATORICS, 2012, 16 (04) : 871 - 889
  • [7] On the Distribution of Multiplicities in Integer Partitions
    Dimbinaina Ralaivaosaona
    [J]. Annals of Combinatorics, 2012, 16 : 871 - 889
  • [8] Partitions with multiplicities associated with divisor functions
    Berndt, Bruce C.
    Robles, Nicolas
    Zaharescu, Alexandru
    Zeindler, Dirk
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (01)
  • [9] On the parity of the number of partitions with odd multiplicities
    Sellers, James A.
    Zanello, Fabrizio
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (07) : 1717 - 1728
  • [10] Extremal sizes of subspace partitions
    Heden, Olof
    Lehmann, Juliane
    Nastase, Esmeralda
    Sissokho, Papa
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2012, 64 (03) : 265 - 274