This study evaluated the importance of ATP-dependent potassium channels (K-ATP) for ischemic preconditioning (IF) in swine. Swine were studied because due to the sparsity of their innate collateral circulation infarct size (IS) development closely resembles that observed in humans. Ninety minutes of ischemia at a blood flow reduction sufficient to reduce regional myocardial work by 90% caused 13.2 +/- 8.9% (SD) IS of the area at risk. A single cycle of 10-min preconditioning ischemia followed by 15-min reperfusion reduced IS after 90 min of ischemia to 2.8 +/- 2.7%. The epicardial monophasic action potential duration at 50% repolarization (MAP(50)) was decreased more markedly during the initial 10 min of the prolonged ischemia than during the first 10 min of the preconditioning ischemic period (84 +/- 4 vs. 89 +/- 2%). Transmural myocardial adenosine (ADO) uptake was reversed to net release during both ischemic periods and during the initial phase of reperfusion. Glibenclamide (0.5 mg/kg, followed by 50 mu g/min iv) abolished the reduction in MAP(50) without altering ADO release. Glibenclamide did not alter IS per se (13.0 +/- 7.6%) but abolished the beneficial effect of IP (IS: 13.6 +/- 6.2%). Thus blockade of K-ATP With glibenclamide abolishes the IS-reducing effect of IP in swine but does not reduce ADO release.