Allometric models and aboveground biomass of Lumnitzera racemosa Willd. forest in Rawa Aopa Watumohai National Park, Southeast Sulawesi, Indonesia

被引:20
|
作者
Kangkuso, Analuddin [1 ]
Jamili, Jamili [1 ]
Septiana, Andi [1 ]
Raya, Rasas [1 ]
Sahidin, Idin [2 ]
Rianse, Usman [3 ]
Rahim, Saban [4 ]
Alfirman, Alfirman [4 ]
Sharma, Sahadev [5 ]
Nadaoka, Kazuo [5 ]
机构
[1] Halu Oleo Univ, Fac Math & Nat Sci, Kendari, Indonesia
[2] Halu Oleo Univ, Fac Pharm, Kendari, Indonesia
[3] Halu Oleo Univ, Fac Agr, Kendari, Indonesia
[4] Halu Oleo Univ, Postgrad Program, Kendari, Indonesia
[5] Tokyo Inst Technol, Grad Sch Informat Sci & Engn, Tokyo, Japan
关键词
allometric model; aboveground biomass; Lumnitzera racemosa; RAWN Park; Indonesia;
D O I
10.1080/21580103.2015.1034191
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Information on aboveground biomass of mangrove forest at Rawa Aopa Watumohai National (RAWN) Park is fundamental for the management of mangroves (Lumnitzera racemosa Willd.) in the park. Allometric relationships of partial or whole L. racemosa trees were examined using independent variables D30, DBH, and DB or quadratics D30(2)H, (DBHH)-H-2, and (DBH)-H-2 from different individuals of L. racemosa trees. Aboveground biomass was estimated by allometric equations and tree census data. Results showed that the best fit for allometric models of stem biomass (WS) and leaf biomass (WL) used the independent variable of (DBHH)-H-2, while the best fit for branch biomass (WB) used quadratic (DBH)-H-2. The quadratic (DBHH)-H-2 is the most reliable parameter for estimating aboveground biomass of L. racemosa trees. Aboveground biomass of L. racemosa varied among stands, ranging from 26.23 to 191.01 ton ha(-1). Biomass density of L. racemosa forest varied from 4.07 to 29.80 ton ha(-1) m(-1). The high aboveground biomass of L. racemosa indicates its high blue carbon stock, which maintains the productivity of nearby coastal areas. Therefore, the results of this study can help the sustainable management of mangroves in the RAWN Park and surrounding areas.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 4 条
  • [1] Mangrove Fruit Bioprospecting: Nutritional and Antioxidant Potential as a Food Source for Coastal Communities in the Rawa Aopa Watumohai National Park, Southeast Sulawesi, Indonesia
    Analuddin, Kangkuso
    Septiana, Andi
    Nasaruddin
    Sabilu, Yusuf
    Sharma, Sahadev
    [J]. INTERNATIONAL JOURNAL OF FRUIT SCIENCE, 2019, 19 (04) : 423 - 436
  • [2] Spatial model of wildfire susceptibility using Machine Learning approaches on Rawa Aopa Watumohai National Park, Indonesia
    Aldiansyah, Septianto
    Madani, Ilyas
    [J]. GEOSCAPE, 2024, 18 (01): : 1 - 20
  • [3] Trends in allometric models and aboveground biomass of family Rhizophoraceae mangroves in the Coral Triangle ecoregion, Southeast Sulawesi, Indonesia
    Kangkuso, Analuddin
    Sharma, Sahadev
    Jamili, Jamili
    Septiana, Andi
    Sahidin, Idin
    Rianse, Usman
    Rahim, Saban
    Nadaoka, Kazuo
    [J]. JOURNAL OF SUSTAINABLE FORESTRY, 2018, 37 (07) : 691 - 711
  • [4] Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models
    Stas, Suzanne M.
    Rutishauser, Ervan
    Chave, Jerome
    Anten, Niels P. R.
    Laumonier, Yves
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2017, 389 : 27 - 34