ON THE SHOT-NOISE STREAMFLOW MODEL AND ITS APPLICATIONS

被引:10
|
作者
KONECNY, F
机构
[1] Institut für Mathematik und Angewandte Statistik der Universität für Bodenkultur, Wien, A-1180
来源
STOCHASTIC HYDROLOGY AND HYDRAULICS | 1992年 / 6卷 / 04期
关键词
STREAM FLOW SERIES; SHOT-NOISE MODEL; SADOLLE-POINT APPROXIMATION;
D O I
10.1007/BF01581622
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper we consider the shot-noise model of streamflow series. We show how design discharge can be obtained by the stochastic intensity of thinned Poisson processes describing the peaks over a threshold. The main result concerns the stationary distribution of peaks. We derive an explicit expression for this limit distribution in terms of its Laplace transform. Approximation formulas are developed making use of the saddle point method for the asymptotic evaluation of contour integrals and the Post-Widder formula for inversion of Laplace transforms. We illustrate this methods on the case of Gamma-distributed shots. The stationary peak distribution is used to approximate the maximum value distribution for larger time intervals.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [1] Moments of renewal shot-noise processes and their applications
    Jang, Jiwook
    Dassios, Angelos
    Zhao, Hongbiao
    SCANDINAVIAN ACTUARIAL JOURNAL, 2018, (08) : 727 - 752
  • [2] ON QUANTUM SHOT-NOISE
    MUZYKANTSKII, BA
    KHMELNITSKII, DE
    PHYSICA B, 1994, 203 (3-4): : 233 - 239
  • [3] A risk model with renewal shot-noise Cox process
    Dassios, Angelos
    Jang, Jiwook
    Zhao, Hongbiao
    INSURANCE MATHEMATICS & ECONOMICS, 2015, 65 : 55 - 65
  • [4] Software release policies on a shot-noise process model
    Chang, YC
    Hung, WL
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 746 - 759
  • [5] Nonstationary filtered shot-noise processes and applications to neuronal membranes
    Brigham, Marco
    Destexhe, Alain
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [6] Beating the shot-noise limit
    Avraham Gover
    Ariel Nause
    Egor Dyunin
    Mikhail Fedurin
    Nature Physics, 2012, 8 : 877 - 880
  • [7] MICROWATT SHOT-NOISE MEASUREMENT
    BACON, AM
    ZHAO, HZ
    WANG, LJ
    THOMAS, JE
    APPLIED OPTICS, 1995, 34 (24): : 5326 - 5330
  • [8] Shot-noise queueing models
    Onno Boxma
    Michel Mandjes
    Queueing Systems, 2021, 99 : 121 - 159
  • [9] Shot-noise Fano factor
    Rajdl, Kamil
    Lansky, Petr
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [10] Shot-noise queueing models
    Boxma, Onno
    Mandjes, Michel
    QUEUEING SYSTEMS, 2021, 99 (1-2) : 121 - 159