NORMAL EXTENSIONS OF LINEAR OPERATORS

被引:0
|
作者
Biyarov, B. N. [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Dept Mech & Math, 2 Satpayev St, Astana 010008, Kazakhstan
来源
EURASIAN MATHEMATICAL JOURNAL | 2016年 / 7卷 / 03期
关键词
formally normal operator; normal operator; correct restriction; correct extension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-0 be a densely defined minimal linear operator in a Hilbert space H. We prove that if there exists at least one correct extension L-S of L-0 with the property D(L-S) = D(L-S*), then we can describe all correct extensions L with the property D(L) = D(L*). We aL(S)o prove that if L-0 is formally normal and there exists at least one correct normal extension L-N, then we can describe all correct normal extensions L of L-0. As an example, the Cauchy-Riemann operator is considered.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 50 条