CONVERGENCE IN NORM FOR ALTERNATING EXPECTATION-MAXIMIZATION (EM) TYPE ALGORITHMS

被引:0
|
作者
HERO, AO
FESSLER, JA
机构
[1] UNIV MICHIGAN,DEPT ELECT ENGN & COMP SCI,ANN ARBOR,MI 48109
[2] UNIV MICHIGAN,DIV NUCL MED,ANN ARBOR,MI 48109
关键词
PENALIZED AND APPROXIMATE EM; CONVERGENCE RATES; NORM REDUCING PROPERTY; APPLICATIONS TO TOMOGRAPHIC IMAGING;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a sufficient condition for convergence of a general class of alternating estimation-maximization (EM) type continuous-parameter estimation algorithms with respect to a given norm. This class includes EM, penalized EM, Green's OSL-EM, and other approximate EM algorithms. The convergence analysis can be extended to include alternating coordinate-maximization EM algorithms such as Meng and Rubin's ECM and Fessler and Hero's SAGE. The condition for monotone convergence can be used to establish norms under which the distance between successive iterates and the limit point of the EM-type algorithm approaches zero monotonically. For illustration, we apply our results to estimation of Poisson rate parameters in emission tomography and establish that in the final iterations the logarithm of the EM iterates converge monotonically in a weighted Euclidean norm.
引用
收藏
页码:41 / 54
页数:14
相关论文
共 50 条
  • [1] Message passing expectation-maximization algorithms
    O'Sullivan, Joseph A.
    [J]. 2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 781 - 786
  • [2] The Expectation-Maximization Algorithm: Gaussian Case The EM Algorithm
    Iatan, Iuliana F.
    [J]. 2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, : 590 - 593
  • [3] TRLFS: Analysing spectra with an expectation-maximization (EM) algorithm
    Steinborn, A.
    Taut, S.
    Brendler, V.
    Geipel, G.
    Flach, B.
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2008, 71 (04) : 1425 - 1432
  • [4] Accelerating Expectation-Maximization Algorithms with Frequent Updates
    Yin, Jiangtao
    Zhang, Yanfeng
    Gao, Lixin
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2012, : 275 - 283
  • [5] SPACE-ALTERNATING GENERALIZED EXPECTATION-MAXIMIZATION ALGORITHM
    FESSLER, JA
    HERO, AO
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) : 2664 - 2677
  • [6] Fast, Adaptive Expectation-Maximization Alignment for Cryo-EM
    Tagare, Hemant D.
    Sigworth, Frederick
    Barthel, Andrew
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 855 - 862
  • [7] Accelerating distributed Expectation-Maximization algorithms with frequent updates
    Yin, Jiangtao
    Zhang, Yanfeng
    Gao, Lixin
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 111 : 65 - 75
  • [8] Expectation-maximization type algorithms for direction of arrival estimation in unknown nonuniform noise
    Gong, Ming-yan
    Lyu, Bin
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 142
  • [9] Expectation-maximization algorithms for inference in Dirichlet processes mixture
    Kimura, T.
    Tokuda, T.
    Nakada, Y.
    Nokajima, T.
    Matsumoto, T.
    Doucet, A.
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2013, 16 (01) : 55 - 67
  • [10] Two Expectation-Maximization algorithms for Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Y.
    [J]. NEUROCOMPUTING, 2014, 130 : 83 - 97