Automatic genre classification of Indian Tamil and western music using fractional MFCC

被引:9
|
作者
Rajesh, Betsy [1 ]
Bhalke, D. G. [1 ]
机构
[1] Savitribai Phule Pune Univ, Dept Elect & Telecommun, JSPMs Rajarshi Shahu Coll Engn, Pune, Maharashtra, India
关键词
Carnatic music; Feature extraction; Fractional Fourier transform; Mel-frequency cepstral coefficients; Timbral features;
D O I
10.1007/s10772-016-9347-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the automatic genre classification of Indian Tamil music and western music using timbral features and fractional Fourier transform (FrFT) based Mel frequency cepstral coefficient (MFCC) features. The classifier model for the proposed system has been built using K-nearest neighbours and support vector machine (SVM) classifiers. In this work, the performance of various features extracted from music excerpts have been analyzed, to identify the appropriate feature descriptors for the two major genres of Indian Tamil music, namely classical music (Carnatic based devotional hymn compositions) and folk music. The results have shown that the feature combination of spectral roll off, spectral flux, spectral skewness and spectral kurtosis, combined with fractional MFCC features, outperforms all other feature combinations, to yield a higher classification accuracy of 96.05 %, as compared to the accuracy of 84.21 % with conventional MFCC. It has also been observed, that the FrFT based MFCC, with timbral features and SVM, efficiently classifies the two western genres of rock and classical music, from the GTZAN dataset, with fewer features and a higher classification accuracy of 96.25 %, as compared to the classification accuracy of 80 % with conventional MFCC.
引用
收藏
页码:551 / 563
页数:13
相关论文
共 50 条
  • [1] Automatic genre classification of North Indian devotional music
    Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 40076, India
    Natl. Conf. Commun., NCC, 2011,
  • [2] Automatic Classification of Carnatic Music Instruments Using MFCC and LPC
    Shetty, Surendra
    Hegde, Sarika
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 1, 2020, 1042 : 463 - 474
  • [3] Automatic music genre classification using ensemble of classifiers
    Silla, Carlos N., Jr.
    Kaestner, Celso A. A.
    Koerich, Alessandro L.
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 3336 - +
  • [4] Automatic genre classification of music content
    Scaringella, N
    Zoia, G
    Mlynek, D
    IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (02) : 133 - 141
  • [5] Automatic Music Genre Classification using Convolution Neural Network
    Vishnupriya, S.
    Meenakshi, K.
    2018 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2018,
  • [6] Automatic Music Genre Classification Using Hybrid Genetic Algorithms
    Karkavitsas, George V.
    Tsihrintzis, George A.
    INTELLIGENT INTERACTIVE MULTIMEDIA SYSTEMS AND SERVICES (IIMSS 2011), 2011, 11 : 323 - 335
  • [7] Inter genre similarity modeling for automatic music genre classification
    Bagci, Ulas
    Erzin, Engin
    2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 639 - +
  • [8] Feature Selection in Automatic Music Genre Classification
    Silla, Carlos N., Jr.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    ISM: 2008 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 2008, : 39 - +
  • [9] Texture selection for automatic music genre classification
    Foleis, Juliano Henrique
    Tavares, Tiago Fernandes
    APPLIED SOFT COMPUTING, 2020, 89
  • [10] Automatic Music Genre Classification Based on CRNN
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Nguyen, Duc-Man
    Kuo, Che-Nan
    ENGINEERING LETTERS, 2021, 29 (01) : 312 - 316