THE LINEAR SPECTRUM OF QUADRATIC APN FUNCTIONS

被引:0
|
作者
Gorodilova, A. A. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
来源
PRIKLADNAYA DISKRETNAYA MATEMATIKA | 2016年 / 34卷 / 04期
关键词
APN function; associated Boolean function; linear spectrum; Gold function;
D O I
10.17223/20710410/34/1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Almost perfect nonlinear (APN) functions are studied. We introduce the linear spectrum Lambda(F) = (lambda(F)(0), ..., lambda(F)(2n-1)) of a quadratic APN function F, where lambda(F)(k) equals the number of linear functions L such that vertical bar{a is an element of F-2(n) \ {0} : B-a(F) = B-a(F + L)}vertical bar = k and B-a(F) = {F(x)+F(x+a) : x is an element of F-2(n)}. We prove that lambda(F)(k) = 0 for all even k <= 2(n)-2 and for all k < (2(n)-1)/3, where F is a quadratic APN function in even number of variables n. Linear spectra for APN functions in small number of variables n = 3,4,5,6 are computed and presented. We consider APN Gold functions F(x) = x(2k+1) for (k,n) = 1 and prove that lambda(F)(2n-1) = 2(n+n/2) if n = 4t for some t and k = n/2 +/- 1, and lambda(F)(2n-1) = 2(n) otherwise.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 50 条
  • [1] On the linear structures of balanced functions and quadratic APN functions
    Musukwa, A.
    Sala, M.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (05): : 859 - 880
  • [2] On the linear structures of balanced functions and quadratic APN functions
    A. Musukwa
    M. Sala
    Cryptography and Communications, 2020, 12 : 859 - 880
  • [3] On the Walsh spectrum of a family of quadratic APN functions with five terms
    QU LongJiang
    TAN Yin
    LI Chao
    Science China(Information Sciences), 2014, 57 (02) : 271 - 277
  • [4] On the Walsh spectrum of a family of quadratic APN functions with five terms
    Qu LongJiang
    Tan Yin
    Li Chao
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (02) : 1 - 7
  • [5] On the Walsh spectrum of a family of quadratic APN functions with five terms
    LongJiang Qu
    Yin Tan
    Chao Li
    Science China Information Sciences, 2014, 57 : 1 - 7
  • [6] Equivalences of power APN functions with power or quadratic APN functions
    Satoshi Yoshiara
    Journal of Algebraic Combinatorics, 2016, 44 : 561 - 585
  • [7] Equivalences of power APN functions with power or quadratic APN functions
    Yoshiara, Satoshi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (03) : 561 - 585
  • [8] On a construction of quadratic APN functions
    Budaghyan, Lilya
    Carlet, Claude
    Leander, Gregor
    2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), 2009, : 374 - 378
  • [9] On the equivalence of quadratic APN functions
    Carl Bracken
    Eimear Byrne
    Gary McGuire
    Gabriele Nebe
    Designs, Codes and Cryptography, 2011, 61 : 261 - 272
  • [10] On some quadratic APN functions
    Taniguchi, Hiroaki
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (09) : 1973 - 1983