ON A BEZIER-TYPE CURVE

被引:0
|
作者
DERRIENNIC, MM
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One defines a new parametric curve, polynomial of degree n, passing within a distance O (n(-1/2)) from T arbitrary points of R(d), preserving the shape of the data points. Based on Bernstein-type polynomials, it is similar to the Bezier curve by its properties. Therefore its degree is independent on the number of the data points. Its expression as a Fourier-Legendre sum allows a fast drawing.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 50 条
  • [1] A FORMULATION FOR BEZIER-TYPE CURVES
    NTOKO, NM
    COMPUTERS IN INDUSTRY, 1990, 15 (04) : 363 - 368
  • [2] A FORMULATION FOR BEZIER-TYPE QUINTIC CURVES
    NTOKO, NM
    COMPUTERS IN INDUSTRY, 1989, 12 (01) : 67 - 72
  • [3] Formulation for Bezier-type quintic curves
    Ntoko, Nzumbe-Mesape, 1600, (12):
  • [4] On the rates of convergence of Bernstein-Chlodovsky polynomials and their Bezier-type variants
    Pych-Taberska, Paulina
    Karsli, Harun
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 403 - 416
  • [5] Robot kinematics for the free-form polishing of deformable Bezier-type surfaces
    Yap, Kian T.
    Yokokohji, Y.
    CIRP Annals - Manufacturing Technology, 1992, 41 (01) : 617 - 620
  • [6] Coupling of Bezier-type streamline and ETMB model to predict dislocation cell size in ECAE
    Narooei, Afsaneh
    Roudini, Ghodratollah
    Narooei, Keivan
    ENGINEERING RESEARCH EXPRESS, 2020, 2 (01):
  • [7] Subdivision Algorithm of A Type aß-Bezier Curve
    Ma, Leting
    Sun, Yuan
    Yang, Huogen
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 122 - 127
  • [8] The generalized Bezier curve -: α Bezier curve
    Zhang, GC
    Zhang, YJ
    Cui, SJ
    Feng, HF
    SECOND INTERNATION CONFERENCE ON IMAGE AND GRAPHICS, PTS 1 AND 2, 2002, 4875 : 963 - 968
  • [9] Type-2 Fuzzy Bezier Curve Modeling
    Zakaria, Rozaimi
    Wahab, Abd Fatah
    Gobithaasan, R. U.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 945 - 952
  • [10] Defining a curve as a Bezier curve
    Baydas, Senay
    Karakas, Bulent
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 522 - 528