LARGE DEVIATIONS, MODERATE DEVIATIONS AND LIL FOR EMPIRICAL PROCESSES

被引:47
|
作者
WU, LM
机构
来源
ANNALS OF PROBABILITY | 1994年 / 22卷 / 01期
关键词
LARGE DEVIATIONS; MODERATE DEVIATIONS; LAW OF ITERATED LOGARITHM (LIL); ISOPERIMETRIC INEQUALITY; SMIRNOV-KOLMOGOROV THEOREM;
D O I
10.1214/aop/1176988846
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X(n))n greater-than-or-equal-to 1 be a sequence of i.i.d. r.v.'s with values in a measurable space (E, E) of law mu, and consider the empirical process L(n)(f) = (1/n)SIGMA(k=1)n f(X(k)) with f varying in a class of bounded functions F. Using a recent isoperimetric inequality of Talagrand, we obtain the necessary and sufficient conditions for the large deviation estimations, the moderate deviation estimations and the LIL of L(n)(.) in the Banach space of bounded functionals l(infinity)(F). The extension to the unbounded functionals is also discussed.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 50 条