On the Computational Complexity of Stochastic Controller Optimization in POMDPs

被引:40
|
作者
Vlassis, Nikos [1 ]
Littman, Michael L. [2 ]
Barber, David [3 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Syst Biomed, 7 Ave Hauts Fourneaux, L-4362 Esch Belval, Luxembourg
[2] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[3] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
美国国家科学基金会;
关键词
Performance; Partially observable Markov decision process; stochastic controller; bilinear program; computational complexity; Motzkin-Straus theorem; sum-of-square-roots problem; matrix fractional program; computations on polynomials; nonlinear optimization;
D O I
10.1145/2382559.2382563
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the problem of finding an optimal stochastic blind controller in a Markov decision process is an NP-hard problem. The corresponding decision problem is NP-hard in PSPACE and SQRT-SUM-hard, hence placing it in NP would imply breakthroughs in long-standing open problems in computer science. Our result establishes that the more general problem of stochastic controller optimization in POMDPs is also NP-hard. Nonetheless, we outline a special case that is convex and admits efficient global solutions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Reinforcement learning for POMDPs based on action values and stochastic optimization
    Perkins, TJ
    [J]. EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 199 - 204
  • [2] Computational complexity in robust controller synthesis
    Hara, S
    Yamada, Y
    [J]. LEARNING, CONTROL AND HYBRID SYSTEMS: FESTSCHRIFT IN HONOR OF BRUCE ALLEN FRANCIS AND MATHUKUMALLI VIDYASAGAR ON THE OCCASION OF THEIR 50TH BIRTHDAYS, 1999, 241 : 59 - 80
  • [3] Computational complexity of stochastic programming problems
    Dyer, M
    Stougie, L
    [J]. MATHEMATICAL PROGRAMMING, 2006, 106 (03) : 423 - 432
  • [4] Stochastic analog networks and computational complexity
    Siegelmann, HT
    [J]. JOURNAL OF COMPLEXITY, 1999, 15 (04) : 451 - 475
  • [5] Computational complexity of stochastic programming problems
    Martin Dyer
    Leen Stougie
    [J]. Mathematical Programming, 2006, 106 : 423 - 432
  • [6] Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs
    Amato, Christopher
    Bernstein, Daniel S.
    Zilberstein, Shlomo
    [J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2010, 21 (03) : 293 - 320
  • [7] TEMPERATURE CONTROLLER OPTIMIZATION BY COMPUTATIONAL INTELLIGENCE
    Cojbasic, Zarko M.
    Ristanovic, Milan R.
    Markovic, Nemanja R.
    Tesanovic, Stefan Z.
    [J]. THERMAL SCIENCE, 2016, 20 : S1541 - S1552
  • [8] A comment on "computational complexity of stochastic programming problems"
    Hanasusanto, Grani A.
    Kuhn, Daniel
    Wiesemann, Wolfram
    [J]. MATHEMATICAL PROGRAMMING, 2016, 159 (1-2) : 557 - 569
  • [9] ON THE COMPUTATIONAL COST AND COMPLEXITY OF STOCHASTIC INVERSE SOLVERS
    Faliszewski, Piotr
    Smolka, Maciej
    Schaefer, Robert
    Paszynski, Maciej
    [J]. COMPUTER SCIENCE-AGH, 2016, 17 (02): : 225 - 264
  • [10] A comment on “computational complexity of stochastic programming problems”
    Grani A. Hanasusanto
    Daniel Kuhn
    Wolfram Wiesemann
    [J]. Mathematical Programming, 2016, 159 : 557 - 569