Sorptivity Ratio and Compressive Strength of Alkali-Activated Blast Furnace Slag Paste

被引:2
|
作者
Qureshi, Mohd. Nadeem [1 ,2 ]
Ghosh, Somnath [3 ]
机构
[1] Jadavpur Univ, Dept Civil Engn, 188 Raja SC Mullick Rd, Kolkata 700032, India
[2] Govt Polytech, Khamgaon, Maharashtra, India
[3] Jadavpur Univ, Civil Engn, Kolkata 700032, India
来源
关键词
adsorption; alkali content; compressive strength; ground granulated blast furnace slag; silicate content; sorptivity ratio;
D O I
10.1520/ACEM20130113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The initial/secondary absorption and compressive strength of alkali-activated slag (AAS) paste has been investigated. Emphasis has been given to secondary absorption of AAS paste based on the method described in ASTM C1585-04 [Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2004, pp. 1-4]. The paste was produced by activating blast furnace slag with sodium hydroxide/potassium hydroxide and sodium silicate solution. The major parameters studied were alkali content, silicate content, and the type of activator. Experimental investigation revealed that initial rate of absorption (Si) and secondary rate of absorption (Ss) decreases with increase in alkali and silicate content up to a certain limit with an increase in compressive strength. The maximum compressive strength was found to be 50.40 MPa for the specimens having lowest sorptivity. It was also found that the sorptivity ratio (Si/Ss) plays a significant role on compressive strength in turn on the durability of AAS composites. This paper is an attempt to introduce the simple method of measuring initial and secondary sorptivity described in ASTM C1585-04 to study the strength and durability of AAS. The microstructure study was carried out using SEM/EDAX.
引用
收藏
页码:238 / 255
页数:18
相关论文
共 50 条
  • [1] Compressive Strength and Microstructure of Carbide Slag and Alkali-Activated Blast Furnace Slag Pastes in China
    Li, Zhixin
    Xu, Kaidong
    Sun, Nan
    Wang, Jina
    Xue, Kaiwang
    Xu, Longyun
    Ren, Yi
    Yan, Zhenzhou
    Sima, Tongbao
    BUILDINGS, 2024, 14 (06)
  • [2] Compressive Strength and Microstructure Properties of Alkali-Activated Systems with Blast Furnace Slag, Desulfurization Slag, and Gypsum
    Cho, Bong-Suk
    Koo, Kyung-Mo
    Choi, Se-Jin
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [3] Preparation and characterization of road alkali-activated blast furnace slag paste
    Wang, Chaohui
    Wen, Penghui
    Wang, Menghao
    Fan, Qiaojuan
    Wang, Xinqi
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 181 : 175 - 184
  • [4] Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste
    Mohammed Nadeem Qureshi
    Somnath Ghosh
    Arabian Journal for Science and Engineering, 2014, 39 : 5905 - 5916
  • [5] Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste
    Qureshi, Mohammed Nadeem
    Ghosh, Somnath
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (08) : 5905 - 5916
  • [6] Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar
    Omur, Tarik
    Miyan, Nausad
    Kabay, Nihat
    Birol, Burak
    Oktay, Didem
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 363
  • [7] Resistance of alkali-activated blast furnace slag to acids
    Hruby, P.
    Bilek, V.
    Topolar, L.
    Kalina, L.
    Iliushchenko, V.
    Koplik, J.
    Masilko, J.
    Soukal, F.
    INTERNATIONAL CONFERENCE BUILDING MATERIALS, PRODUCTS AND TECHNOLOGIES, ICBMPT 2022, 2022, 2341
  • [8] Immobilization of cesium with alkali-activated blast furnace slag
    Komljenovic, M.
    Tanasijevic, G.
    Dzunuzovic, N.
    Provis, J. L.
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 388 (388)
  • [9] Compressive Strength and Resistance to Sulphate Attack of Ground Granulated Blast Furnace Slag, Lithium Slag, and Steel Slag Alkali-Activated Materials
    Zhang, Shunshan
    Zhang, Yannian
    Zhang, Jisong
    Li, Yunkai
    BUILDINGS, 2024, 14 (08)
  • [10] Structure, Mechanisms of Reaction, and Strength of an Alkali-Activated Blast-Furnace Slag
    Burciaga-Diaz, Oswaldo
    Ivan Escalante-Garcia, Jose
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (12) : 3939 - 3948