Seismic wave modeling in viscoelastic VTI media using spectral element method

被引:2
|
作者
Ping, Ping [1 ,2 ]
Xu, Yixian [1 ,2 ,3 ]
Zhang, Yu [2 ,4 ,5 ]
Yang, Bo [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan, Hubei, Peoples R China
[2] China Univ Geosci, Subsurface Multi Scale Imaging Lab, Wuhan 430074, Hubei, Peoples R China
[3] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[4] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[5] Minist Educ, Key Lab Geospace Environm & Geodesy, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral element method (SEM); Viscoelastic vertical transversely isotropic (VTI) media; Perfectly matched layer; Wave modeling;
D O I
10.1007/s11589-014-0094-8
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral element method (SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries. It is an advanced choice for wave simulations. Due to anelasticity of earth media, SEM for elastic media is no longer appropriate. On fundamental of the second-order elastic SEM, this work takes the viscoelastic wave equations and the vertical transversely isotropic (VTI) media into consideration, and establishes the second-order SEM for wave modeling in viscoelastic VTI media. The second-order perfectly matched layer for viscoelastic VTI media is also introduced. The problem of handling the overlapped absorbed corners is solved. A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling. Furtherly, numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media. This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 50 条
  • [1] Seismic wave modeling in viscoelastic VTI media using spectral element method
    Ping Ping
    Yixian Xu
    Yu Zhang
    Bo Yang
    [J]. Earthquake Science, 2014, 27 (05) : 553 - 565
  • [2] Propagating Seismic Waves in VTI Attenuating Media Using Fractional Viscoelastic Wave Equation
    Wang, Ning
    Xing, Guangchi
    Zhu, Tieyuan
    Zhou, Hui
    Shi, Ying
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (04)
  • [3] Seismic-Wave Propagation Modeling in Viscoelastic Media Using the Auxiliary Differential Equation Method
    Dhemaied, A.
    Rejiba, F.
    Camerlynck, C.
    Bodet, L.
    Guerin, R.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2011, 101 (01) : 413 - 420
  • [4] Spectral Laguerre method for viscoelastic seismic modeling
    Mikhailenko, B
    Mikhailov, A
    Reshetova, G
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 891 - 896
  • [5] Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method
    Mikhailenko, BG
    Mikhailov, AA
    Reshetova, GV
    [J]. PURE AND APPLIED GEOPHYSICS, 2003, 160 (07) : 1207 - 1224
  • [6] Numerical Modeling of Transient Seismic Fields in Viscoelastic Media Based on the Laguerre Spectral Method
    B. G. Mikhailenko
    A. A. Mikhailov
    G. V. Reshetova
    [J]. pure and applied geophysics, 2003, 160 : 1207 - 1224
  • [7] A Legendre spectral element method with optimal mass matrix for seismic wave modeling
    Liu ShaoLin
    Yang DingHui
    Meng XueLi
    Wang WenShuai
    Xu XiWei
    Li XiaoFan
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (12): : 4802 - 4815
  • [8] Modeling crack in viscoelastic media using the extended finite element method
    Yu TianTang
    Ren QingWen
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (06) : 1599 - 1606
  • [9] Modeling crack in viscoelastic media using the extended finite element method
    TianTang Yu
    QingWen Ren
    [J]. Science China Technological Sciences, 2011, 54 : 1599 - 1606
  • [10] Modeling crack in viscoelastic media using the extended finite element method
    YU TianTang & REN QingWen Department of Engineering Mechanics
    [J]. Science China Technological Sciences, 2011, (06) : 1599 - 1606