ON ONE INVERSE PROBLEM FOR A SYSTEM OF REACTION-DIFFUSION TYPE

被引:0
|
作者
Pashayev, Naid J. [1 ]
机构
[1] Lenkeran State Univ, Lenkeran, Azerbaijan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the ill-posedness matters of an inverse problem of the equations of reaction diffusion type system, dependent on spatial variables of the coefficients in the right side. A theorem on the uniqueness stability of the solution is proved.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [1] STABILITY OF CONDUCTIVITIES IN AN INVERSE PROBLEM IN THE REACTION-DIFFUSION SYSTEM IN ELECTROCARDIOLOGY
    Ainseba, Bedr'Eddine
    Bendahmane, Mostafa
    He, Yuan
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 369 - 385
  • [2] The inverse problem of reconstructing reaction-diffusion systems
    Kaltenbacher, Barbara
    Rundell, William
    [J]. INVERSE PROBLEMS, 2020, 36 (06)
  • [3] On an inverse potential problem for a fractional reaction-diffusion equation
    Kaltenbacher, Barbara
    Rundell, William
    [J]. INVERSE PROBLEMS, 2019, 35 (06)
  • [4] Tikhonov regularization for an inverse source problem for a coupled system of reaction-diffusion equations
    Engl, H.W.
    Nanda, A.
    [J]. Journal of Inverse and Ill-Posed Problems, 1998, 6 (06): : 583 - 604
  • [5] A STEFAN PROBLEM FOR A REACTION-DIFFUSION SYSTEM
    FRIEDMAN, A
    ROSS, DS
    ZHANG, JH
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1089 - 1112
  • [6] A reaction-diffusion system approximation of a one-phase Stefan problem
    Eymard, R
    Hilhorst, D
    van der Hout, R
    Peletier, LA
    [J]. OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 156 - 170
  • [7] Conservation laws for a system of reaction-diffusion type with one spatial variable
    Neshchadim M.V.
    [J]. Journal of Applied and Industrial Mathematics, 2011, 5 (3) : 400 - 405
  • [8] On a reaction-diffusion system of flocculation type
    Zermani, Samia
    Abdellatif, Nahla
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [9] UNIQUENESS IN A CAUCHY PROBLEM FOR REACTION-DIFFUSION SYSTEM AND INVERSE SOURCE PROBLEMS IN WATER POLLUTION
    Ben Belgacem, Faker
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (10):
  • [10] Cauchy problem for a system of reaction-diffusion equations
    Chen, X.
    [J]. Zhengzhou Daxue Xuebao/Journal of Zhengzhou University, 2001, 33 (03): : 5 - 12