NORMALITY AND COMPACTNESS ARE EQUIVALENT IN HYPERSPACES

被引:2
|
作者
KEESLING, J
机构
关键词
D O I
10.1090/S0002-9904-1970-12459-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:618 / &
相关论文
共 50 条
  • [1] ON EQUIVALENCE OF NORMALITY AND COMPACTNESS IN HYPERSPACES
    KEESLING, J
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (03) : 657 - &
  • [3] Compactness and local compactness in hyperspaces
    Costantini, C
    Levi, S
    Pelant, J
    TOPOLOGY AND ITS APPLICATIONS, 2002, 123 (03) : 573 - 608
  • [4] UNIFORMITIES, HYPERSPACES, AND NORMALITY
    DICONCILIO, A
    MONATSHEFTE FUR MATHEMATIK, 1989, 107 (04): : 303 - 308
  • [5] LOCAL COMPACTNESS OF HYPERSPACES
    BURDICK, BS
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 : 28 - 33
  • [6] PAIRWISE COMPACTNESS IN BITOPOLOGICAL HYPERSPACES
    VASUDEVA.R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (04): : A449 - A450
  • [7] Monotone normality, measures and hyperspaces
    Brandsma, H
    van Mill, J
    TOPOLOGY AND ITS APPLICATIONS, 1998, 85 (1-3) : 287 - 298
  • [8] Orthocompactness versus normality in hyperspaces
    Hirata, Yasushi
    Kemoto, Nobuyuki
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (04) : 1169 - 1178
  • [9] SOME PROPERTIES RELATED TO COMPACTNESS IN HYPERSPACES
    GINSBURG, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A562 - A563
  • [10] Compactness and axioms of countability in soft hyperspaces
    Senel, G.
    Baek, J. I.
    Han, S. H.
    Cheong, M.
    Hur, K.
    AIMS MATHEMATICS, 2025, 10 (01): : 72 - 96