FUNCTORS PRESERVING TAMENESS

被引:13
|
作者
DELAPENA, JA [1 ]
机构
[1] NATL AUTONOMOUS UNIV MEXICO, INST MATEMAT, MEXICO CITY 04510, DF, MEXICO
关键词
D O I
10.4064/fm-137-3-177-185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let LAMBDA = k[Q]/I be a basic and connected finite-dimensional algebra over an algebraically closed field k. For each dimension vector z is-an-element-of N(Q0), we denote by mod LAMBDA-(z) the variety of LAMBDA-modules of dimension type z and by ind LAMBDA-(z) the constructible subset of indecomposable modules. We prove that LAMBDA is a tame algebra if and only if for each z is-an-element-of N(Q0), any constructible subset C of ind LAMBDA-(z) is at most one-dimensional provided different modules in C are not isomorphic. We apply this criterion to show that tameness is preserved by Ext functors and under suitable assumptions by Galois covering functors.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 50 条