Cubic-Spline Interpolation in Lagrangian Advection Computation

被引:0
|
作者
Schohl, G. A. [1 ]
Holly, F. M., Jr. [2 ,3 ]
机构
[1] Tennessee Valley Author, Engrg Lab, Norris, TN 37918 USA
[2] Univ Iowa, Iowa Inst Hydr Res, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Civ & Envir Engrg, Iowa City, IA 52242 USA
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the computation of advection-diffusive contaminant transport, the Holly-Preissmann characteristics scheme for the advection operator is known to be quite accurate and stable. However, these qualities are obtained at the expense of having to solve an auxiliary transport problem for the concentration derivative. This paper shows that the Holly-Preissmann Hermite cubic interpolating polynomial can be replaced by a cubic-spline interpolating polynomial, thus obviating the need to solve the auxiliary problem. Although the cubic-spline approach lacks some of the intuitively appealing features of the Holly-Preissmann approach, it is nearly as accurate while offering a computational time saving of 20%-30%, with a corresponding reduction in code size. The paper outlines the computational procedure, and presents demonstrative calculations illustrating the performance of the method for the familiar test case of advective transport of a Gaussian contaminant distribution.
引用
收藏
页码:248 / 253
页数:6
相关论文
共 50 条
  • [1] CUBIC-SPLINE INTERPOLATION IN LAGRANGIAN ADVECTION COMPUTATION
    SCHOHL, GA
    HOLLY, FM
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1991, 117 (02): : 248 - 253
  • [2] Characteristics method with cubic-spline interpolation for open channel flow computation
    Tsai, TL
    Chiang, SW
    Yang, JC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (06) : 663 - 683
  • [3] Characteristics method using cubic-spline interpolation for advection-diffusion equation
    Tsai, TL
    Yang, JC
    Huang, LH
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2004, 130 (06): : 580 - 585
  • [4] Cubic-spline interpolation: Part 1
    Dyer, SA
    Dyer, JS
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2001, 4 (01) : 44 - 46
  • [5] Cubic-spline interpolation: Part 2
    Dyer, SA
    He, X
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2001, 4 (02) : 34 - 36
  • [6] Isophote estimation by cubic-spline interpolation
    Wang, Q
    Ward, R
    Shi, HJ
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 401 - 404
  • [7] AN IMPROVED APPROACH TO THE CUBIC-SPLINE INTERPOLATION
    Hong, Shao-Hua
    Wang, Lin
    Truong, Trieu-Kien
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1468 - 1472
  • [8] An improved approach to the cubic-spline interpolation
    Lin, Tsung-Ching
    Hong, Shao-Hua
    Truong, Trieu-Kien
    Wang, Lin
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVI, 2013, 8856
  • [9] Low-complexity direct computation algorithm for cubic-spline interpolation scheme
    Hong, Shao-Hua
    Wang, Lin
    Trieu-Kien Truong
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 50 : 159 - 166
  • [10] A SPACE-VARIANT CUBIC-SPLINE INTERPOLATION
    Jiang, Jianxing
    Hong, Shaohua
    Wang, Lin
    [J]. 2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,