GRADE ESTIMATION OF CHI-SQUARE DIVERGENCE

被引:0
|
作者
MIELNICZUK, J [1 ]
机构
[1] POLISH ACAD SCI,INST COMP SCI,PL-00901 WARSAW,POLAND
关键词
ASYMPTOTIC MEAN SQUARE ERROR; BANDWIDTH; CHI-SQUARE DIVERGENCE; GRADE DENSITY; MODIFIED KERNEL ESTIMATE; SEPARATION MEASURE;
D O I
10.1080/03610929108830754
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For F1, F2 being distribution functions such that F2 is absolutely continuous w.r.t. F1 and F1 is continous, the chi-square divergence between F2 and F1 equal to chi(2) = integral g2(s)ds - 1, g(s) = (F2-degrees F1(-1)), (s), is considered. Its estimator chi(2) based on the modified kernel estimate of the grade density g is introduced. Asymptotic normality of chi(2) is established, asymptotic variance turns out to be larger than for the estimator of chi(2) in the case when the i.i.d. sample from g is observable. Finally, choice of smoothing parameter is discussed based on calculation of the asymptotic mean square error for some approximation of chi(2).
引用
收藏
页码:4021 / 4041
页数:21
相关论文
共 50 条
  • [1] ESTIMATION OF SYMMETRIC CHI-SQUARE DIVERGENCE FOR POINT PROCESSES
    Park, Il
    Seth, Sohan
    Rao, Murali
    Principe, Jose C.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2016 - 2019
  • [2] Markov chain order estimation based on the chi-square divergence
    Baigorri, Angel Rodolfo
    Goncalves, Catia Regina
    Alves Resende, Paulo Angelo
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (04): : 563 - 578
  • [3] An estimation method for the Neyman chi-square divergence with application to test of hypotheses
    Broniatowski, M.
    Leorato, S.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) : 1409 - 1436
  • [4] ON THE USE OF MINIMUM CHI-SQUARE ESTIMATION
    HARRIS, RR
    KANJI, GK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1983, 32 (04) : 379 - 394
  • [5] THEORY OF THE METHOD OF ESTIMATION BY MINIMUM CHI-SQUARE
    RAO, CR
    [J]. BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1957, 35 (02): : 25 - 32
  • [6] BOUNDS FOR THE CHI-SQUARE APPROXIMATION OF THE POWER DIVERGENCE FAMILY OF STATISTICS
    Gaunt, Robert E.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2022, 59 (04) : 1059 - 1080
  • [7] Geometric properties of noninformative priors based on the chi-square divergence
    Tanaka, Fuyuhiko
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [8] CHI-SQUARE STATISTIC
    RIDER, BA
    [J]. AMERICAN JOURNAL OF OCCUPATIONAL THERAPY, 1976, 30 (01): : 52 - 52
  • [9] CHI-SQUARE TEST
    WARNER, P
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1959, 261 (17): : 871 - 871
  • [10] CHI-SQUARE QUANTILES
    KNIGHT, W
    [J]. COMMUNICATIONS OF THE ACM, 1975, 18 (02) : 116 - 116