Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation

被引:342
|
作者
Galatsanos, Nikolas P. [1 ]
Katsaggelos, Aggelos K.
机构
[1] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[2] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
关键词
38;
D O I
10.1109/83.148606
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. In this paper the problem of choosing the regularization parameter and estimating the noise variance in image restoration is examined. An error analysis based on an objective mean square error (MSE) criterion is used to motivate regularization. Two new approaches for choosing the regularization parameter and estimating the noise variance are proposed. The proposed and existing methods are compared and their relation to linear minimum mean square error (LMMSE) filtering is examined. Experiments are presented that verify the theoretical results.
引用
收藏
页码:322 / 336
页数:15
相关论文
共 50 条
  • [1] Selecting regularization parameter in image restoration based on the variance of noise
    Key Laboratory of Digital Earth Sciences, Center for Earth Observation, Chinese Academy of Sciences, Beijing 100086, China
    [J]. Guangxue Xuebao, 2009, 9 (2395-2401):
  • [2] A STUDY OF METHODS OF CHOOSING THE SMOOTHING PARAMETER IN IMAGE-RESTORATION BY REGULARIZATION
    THOMPSON, AM
    BROWN, JC
    KAY, JW
    TITTERINGTON, DM
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (04) : 326 - 339
  • [3] Selection of Regularization Parameter Based on Synchronous Noise in Total Variation Image Restoration
    Liu, Peng
    Liu, Dingsheng
    Liu, Zhiwen
    [J]. THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011), 2011, 8009
  • [4] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [5] Optimal numerical methods for choosing an optimal regularization parameter
    Okamoto, K.
    Li, B. Q.
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2007, 51 (06) : 515 - 533
  • [6] A method for estimating noise variance of CT image
    Ikeda, Mitsuru
    Makino, Reiko
    Imai, Kuniharu
    Matsumoto, Maiko
    Hitomi, Rika
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (08) : 642 - 650
  • [7] A multi-parameter regularization model for image restoration
    Fan, Qibin
    Jiang, Dandan
    Jiao, Yuling
    [J]. SIGNAL PROCESSING, 2015, 114 : 131 - 142
  • [8] Regularization parameter adaptive selection for blurred image restoration
    Chi, Ruinan
    Huang, Xin
    [J]. Journal of Computers (Taiwan), 2019, 30 (04) : 233 - 239
  • [9] Selection of regularization parameter in total variation image restoration
    Liao, Haiyong
    Li, Fang
    Ng, Michael K.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2311 - 2320
  • [10] Minimum slope method for choosing regularization parameter in ECT image reconstruction
    School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
    [J]. Dongbei Daxue Xuebao, 2006, 8 (855-858):