AN EFFICIENT ALGORITHM FOR CALCULATING THE LIKELIHOOD AND LIKELIHOOD GRADIENT OF ARMA MODELS

被引:0
|
作者
BURSHTEIN, D
机构
[1] Department of Electrical Engineering—Systems, Tel-Aviv University, Tel-Aviv
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/9.250487
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We obtain exact analytical expressions for the likelihood and likelihood gradient of stationary autoregressive moving average (ARMA) models. Let us denote the sample size by N, the autoregressive order by p, and the moving average order by q. The calculation of the likelihood requires (p + 2q + 1)N + o(N) multiply-add operations, and the calculation of the likelihood gradient requires (2p + 6q + 2)N + o(N) multiply-add operations. These expressions may be used to obtain an iterative, Newton-Raphson-type converging algorithm, with superlinear convergence rate, that computes the maximum-likelihood estimator in (2p + 6q + 2)N + o(N) multiply-add operations per iteration.
引用
收藏
页码:336 / 340
页数:5
相关论文
共 50 条