On Kahan's automatic step-size control and an anadromic gradient descent iteration

被引:0
|
作者
Gu, Zirui [1 ]
Jin, Kexin [1 ]
Meng, Yifeng [1 ]
Xue, Linuo [1 ]
Zhang, Lei-Hong [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Accelerated first-order methods; momentum; convergence analysis; anadromic methods; Barzilai-Borwein step-size;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Accelerating the basic gradient iteration is a critical issue in numerical optimization and deep-learning. Recently, William Kahan [Kahan, Automatic Step-Size Control for Minimization Iterations, Technical report, University of California, Berkeley CA, USA, 2019] proposed automatic step-size strategies for the gradient descent iteration without explicitly using any prior information of the Hessian; moreover, a new momentum-based gradient acceleration method, namely, an Anadromic Gradient Descent (AGD) iteration, was proposed. Besides the capability of accelerating the basic gradient descent iteration, AGD enables the iteration to return to the past iterates by just reversing steps in sign and order in the same updating formulation. Numerical performances of the automatic step-size strategies and AGD are claimed to be favourable. In this paper, for the quadratic model, through a revisit of some classical momentum-based gradient methods, we perform new analysis on the convergence and their optimal hyper-parameters. We also investigate the convergence behaviour of AGD with the optimal hyper-parameters and connect one Kahan's automatic step-size scheme with the long Barzilai-Borwein step-size. Numerical results are presented to reflect the theoretical convergence behaviours and demonstrate the practical performances of various momentum-based gradient methods.
引用
收藏
页数:30
相关论文
共 22 条
  • [1] On Kahan's automatic step-size control and an anadromic gradient descent iteration
    Gu, Zirui
    Jin, Kexin
    Meng, Yifeng
    Xue, Linuo
    Zhang, Lei-Hong
    OPTIMIZATION, 2023,
  • [2] Stochastic Gradient Descent with Preconditioned Polyak Step-Size
    Abdukhakimov, F.
    Xiang, C.
    Kamzolov, D.
    Takac, M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (04) : 621 - 634
  • [3] Gradient-Descent Adaptive Filtering Using Gradient Adaptive Step-Size
    Talebi, Sayed Pouria
    Darvishi, Hossein
    Werner, Stefan
    Rossi, Pierluigi Salvo
    2022 IEEE 12TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2022, : 321 - 325
  • [4] Simulation of Chua's circuit by automatic control of step-size
    Tlelo-Cuautle, E.
    Munoz-Pacheco, Jesus M.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1526 - 1533
  • [5] Extending the Step-Size Restriction for Gradient Descent to Avoid Strict Saddle Points
    Schaeffer, Hayden
    McCalla, Scott G.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 1181 - 1197
  • [6] Generalized normalized gradient descent algorithm with direct update of the step-size parameter
    Paleologu, Constantin
    Vladeanu, Calin
    Ciochina, Silviu
    Enescu, Andrei Alexandru
    ISSCS 2007: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2007, : 181 - +
  • [7] A note on Wilkinson's iterative refinement of solution with automatic step-size control
    Wu, Xinyuan
    Wu, Xiaoxuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (06) : 1192 - 1200
  • [8] AUTOMATIC STEP-SIZE CONTROL FOR RUNGE-KUTTA INTEGRATION
    WARTEN, RM
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1963, 7 (04) : 340 - 341
  • [9] Frequency scaling simulation of Chua's circuit by automatic determination and control of step-size
    Tlelo-Cuautle, E.
    Munoz-Pacheco, J. M.
    Martinez-Carballido, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 194 (02) : 486 - 491
  • [10] Metatrace Actor-Critic: Online Step-Size Tuning by Meta-Gradient Descent for Reinforcement Learning Control
    Young, Kenny
    Wang, Baoxiang
    Taylor, Matthew E.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4185 - 4191