Microsomal phospholipids (PL) are a good target for the reactive intermediates produced by either the oxidative or the reductive biotransformation of CHCl3 (Testai et al. (1990), Toxicol. Appl. Pharmacol. 104, 496 - 503). In order to preliminarily characterize the different PL with CHCl3 reactive intermediates, two common methods of PL breakdown have been exploited: the acid-catalyzed transmethylation and the enzymatic hydrolysis with phospholipase C. The results indicated that radioactivity derived from the adducts of PL with the oxidation metabolite, phosgene, partitioned preferentially in the aqueous phase (the ratio of aqueous to organic phase radioactivity contents was about 10); the opposite occurred (ratio about 0. 1) when the PL adducts were produced by the reductive process metabolites (dichloromethyl radicals). Therefore, the two methods of PL adduct breakdown can be used to detect and quantitate selectively the two reactive intermediates of CHCl3 biotransformation. The use of phospholipase C, which specifically cleaves the bond between the glyceryl-oxygen and the phosphor atom of PL also gave some structural information. Indeed, the radioactivity partitioning in the aqueous phase after enzymatic hydrolysis of CHCl3 oxidation-associated PL adducts, indicated the selective covalent binding of phosgene residues with the PL polar heads. The clear-cut different partition of radioactivity observed after hydrolysis of PL adducts with CHCl3 reduction intermediates, analogously indicated that dichloromethyl radicals were selectively bound to the PL fatty acyl chains. Using this method we could confirm that in in vitro experimental conditions resembling the physiological status of the liver, both metabolic pathways were concurrently active in hepatic microsomes of B6C3F1 mice. Extents of reactive metabolites similar to those found in B6C3F1 mouse liver microsomes, could be measured in Sprague - Dawley rat liver microsomes only after pretreatment of the animals with PB and incubation with higher CHCl3 concentrations. The toxicological implications of these findings are discussed.