In slices from the visual cortex of kittens maintained in vitro, long-term potentiation of synaptic transmission following high frequency stimuli (10 Hz, 2 min) delivered at low to medium stimulus intensities (80 to 200 mu A), is accompanied by changes of certain electrophysiological measures recorded intracellularly, such as long-lasting depolarization of membrane potential and decreased threshold to elicitation of an action potential. These parameters have never before been shown to be altered following high frequency stimulation in other systems widely used in studying synaptic plasticity, such as in hippocampal neurons. Another important difference between results from these two systems is that the amplitude of the excitatory post-synaptic potential is enhanced after high frequency stimulation in hippocampal neurons, whereas in striate cortex from young kittens, we observed a decrease. We demonstrate here that this decrease can be reversed to show enhancement from the original amplitude, upon clamp of membrane potential back to the voltage observed prior to stimulation. Thus, what appears to be ''long-term depression'' of synaptic transmission, as recorded extracellularly and represented by diminished flow of synaptic current, can be reversed by stepping membrane voltage back to the pre-high frequency stimulation level, to produce responses that then become consistent with long-term potentiation.