CTL-ASTERISK AND ECTL-ASTERISK AS FRAGMENTS OF THE MODAL MU-CALCULUS

被引:69
|
作者
DAM, M
机构
[1] Swedish Institute of Computer Science, S-164 38 Kista
关键词
D O I
10.1016/0304-3975(94)90269-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Direct embeddings of the full branching-time CTL* and its extension ECTL* into the modal mu-calculus are presented. The embeddings use tableaux as intermediate representations of formulas, and use extremal fixed points to characterise those paths through tableaux that satisfy an admissibility criterion, guaranteeing eventualities to be eventually satisfied. The version of ECTL* considered replaces the entire linear-time fragment of CTL* by Buchi automata on infinite strings. As a consequence the embedding of ECTL* turns out to be computable in linear time, while the embedding of CTL* is doubly exponential in the worst case.
引用
收藏
页码:77 / 96
页数:20
相关论文
共 43 条
  • [2] ABSTRACT INTERPRETATION OF REACTIVE SYSTEMS - ABSTRACTIONS PRESERVING FOR-ALL-CTL-ASTERISK, THERE-EXISTS-CTL-ASTERISK AND CTL-ASTERISK
    DAMS, D
    GRUMBERG, O
    GERTH, R
    [J]. PROGRAMMING CONCEPTS, METHODS AND CALCULI, 1994, 56 : 573 - 592
  • [3] COMPLEXITY OF MODEL CHECKING RECURSION SCHEMES FOR FRAGMENTS OF THE MODAL MU-CALCULUS
    Kobayashi, Naoki
    Ong, C-H Luke
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (04) : 1 - 23
  • [4] Complexity of Model Checking Recursion Schemes for Fragments of the Modal Mu-Calculus
    Kobayashi, Naoki
    Ong, C. -H. Luke
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT II, PROCEEDINGS, 2009, 5556 : 223 - +
  • [5] Sahlqvist Correspondence for Modal mu-calculus
    Johan van Benthem
    Nick Bezhanishvili
    Ian Hodkinson
    [J]. Studia Logica, 2012, 100 : 31 - 60
  • [6] On the proof theory of the modal mu-calculus
    Studer T.
    [J]. Studia Logica, 2008, 89 (3) : 343 - 363
  • [7] DUALITY AND THE COMPLETENESS OF THE MODAL MU-CALCULUS
    AMBLER, S
    KWIATKOWSKA, M
    MEASOR, N
    [J]. THEORETICAL COMPUTER SCIENCE, 1995, 151 (01) : 3 - 27
  • [8] Sahlqvist Correspondence for Modal mu-calculus
    van Benthem, Johan
    Bezhanishvili, Nick
    Hodkinson, Ian
    [J]. STUDIA LOGICA, 2012, 100 (1-2) : 31 - 60
  • [9] Simple Probabilistic Extension of Modal Mu-Calculus
    Liu, Wanwei
    Song, Lei
    Wang, Ji
    Zhang, Lijun
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 882 - 888
  • [10] LOCAL MODEL CHECKING IN THE MODAL MU-CALCULUS
    STIRLING, C
    WALKER, D
    [J]. THEORETICAL COMPUTER SCIENCE, 1991, 89 (01) : 161 - 177