Building of CBR's DB Using Ontology for a Collision Avoidance System

被引:0
|
作者
Park, G. K. [1 ]
Kim, W. G. [1 ]
Benedictos, J. L. R. M. [1 ]
机构
[1] Mokpo Natl Maritime Univ, Mokpo, South Korea
关键词
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
We have proposed Fuzzy-CBR to find a solution from past knowledge retrieved from the database and adapted to the new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology for identifying the concepts involved in a new case, used as inputs, for ship collision avoidance support system and in solving for similarity through document articulation and abstraction levels. These ontologies will be used to build a conceptual model of a manoeuvring situation.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 50 条
  • [1] Ontology-based fuzzy-CBR support system for ship's collision avoidance
    Park, Gyei-Kark
    Benedictos, John Leslie R. M.
    Lee, Chang-Shing
    Wang, Mei-Hui
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1845 - 1850
  • [2] A CBR-based approach for ship collision avoidance
    Liu, Yuhong
    Yang, Chunsheng
    Du, Xuanmin
    [J]. NEW FRONTIERS IN APPLIED ARTIFICIAL INTELLIGENCE, 2008, 5027 : 687 - +
  • [3] Case learning for CBR-based collision avoidance systems
    Yuhong Liu
    Chunsheng Yang
    Yubin Yang
    Fuhua Lin
    Xuanmin Du
    Takayuki Ito
    [J]. Applied Intelligence, 2012, 36 : 308 - 319
  • [4] Case learning for CBR-based collision avoidance systems
    Liu, Yuhong
    Yang, Chunsheng
    Yang, Yubin
    Lin, Fuhua
    Du, Xuanmin
    Ito, Takayuki
    [J]. APPLIED INTELLIGENCE, 2012, 36 (02) : 308 - 319
  • [5] Alaska railroad's collision avoidance system
    Anon
    [J]. Railway Age, 2003, 204 (06)
  • [6] Train Collision Avoidance System by Using RFID
    Bhavsar, Smita S.
    Kulkarni, A. N.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 30 - 34
  • [7] Building CBR based Diagnosis System using jCOLIBRI
    Sharma, Seema
    Mehrotra, Deepti
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), 2017, : 634 - 638
  • [8] Evaluation of Forward Collision Avoidance System using Driver's Hazard Perception
    Li, Yang
    Zheng, Yang
    Wang, Jianqiang
    Wang, Likun
    Kodaka, Kenji
    Li, Keqiang
    [J]. 2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 2273 - 2278
  • [9] AN AGENT-BASED INFORMATION CUSTOMIZATION SYSTEM USING CBR AND ONTOLOGY
    Lee, Hynn Jung
    Sohn, Mye M.
    [J]. ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, : 285 - 290
  • [10] A COLLISION AVOIDANCE SYSTEM
    DEGRE, T
    LEFEVRE, X
    [J]. JOURNAL OF NAVIGATION, 1981, 34 (02): : 294 - 302