A Semi-Supervised Framework for MMMs-Induced Fuzzy Co-Clustering with Virtual Samples

被引:2
|
作者
Tanaka, Daiji [1 ]
Honda, Katsuhiro [1 ]
Ubukata, Seiki [1 ]
Notsu, Akira [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Sakai, Osaka 5998531, Japan
关键词
D O I
10.1155/2016/5206048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although the goal of clustering is to reveal structural information from unlabeled datasets, in cases with partial structural supervisions, semi-supervised clustering is expected to improve partition quality. However, in many real applications, it may cause additional costs to provide an enough amount of supervised objects with class labels. A virtual sample approach is a practical technique for improving classification quality in semi-supervised learning, in which additional virtual samples are generated from supervised objects. In this research, the virtual sample approach is adopted in semi-supervised fuzzy co-clustering, where the goal is to reveal object-item pairwise cluster structures from cooccurrence information among them. Several experimental results demonstrate the characteristics of the proposed approach.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Deterministic Clustering Framework in MMMs-Induced Fuzzy Co-clustering
    Oshio, Shunnya
    Honda, Katsuhiro
    Ubukata, Seiki
    Notsu, Akira
    [J]. INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, IUKM 2015, 2015, 9376 : 204 - 213
  • [2] Deterministic Annealing Framework in MMMs-Induced Fuzzy Co-Clustering and Its Applicability
    Oshio, Shunnya
    Honda, Katsuhiro
    Ubukata, Seiki
    Notsu, Akira
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (01): : 43 - 50
  • [3] A Noise Fuzzy Co-clustering Scheme in MMMs-induced Clustering
    Honda, Katsuhiro
    Yamamoto, Nami
    Ubukata, Seiki
    Notsu, Akira
    [J]. 2016 JOINT 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 17TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2016, : 695 - 699
  • [4] MMMs-Induced Possibilistic Fuzzy Co-Clustering and its Characteristics
    Ubukata, Seiki
    Koike, Katsuya
    Notsu, Akira
    Honda, Katsuhiro
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (05) : 747 - 758
  • [5] MMMs-Induced Fuzzy Co-clustering with Exclusive Partition Penalty on Selected Items
    Nakano, Takaya
    Honda, Katsuhiro
    Ubukata, Seiki
    Notsu, Akira
    [J]. INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, IUKM 2015, 2015, 9376 : 226 - 235
  • [6] Exclusive Item Partition with Fuzziness Tuning in MMMs-Induced Fuzzy Co-clustering
    Nakano, Takaya
    Honda, Katsuhiro
    Ubukata, Seiki
    Notsu, Akira
    [J]. INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, IUKM 2016, 2016, 9978 : 185 - 194
  • [7] Fuzzy semi-supervised co-clustering for text documents
    Yan, Yang
    Chen, Lihui
    Tjhi, William-Chandra
    [J]. FUZZY SETS AND SYSTEMS, 2013, 215 : 74 - 89
  • [8] A Semi-supervised Fuzzy Co-clustering Framework and Application to Twitter Data Analysis
    Honda, Katsuhiro
    Ubukata, Seiki
    Notsu, Akira
    Takahashi, Norimitsu
    Ishikawa, Yutaka
    [J]. 2015 4TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION ICIEV 15, 2015,
  • [9] A Heuristic-Based Model for MMMs-Induced Fuzzy Co-Clustering with Dual Exclusive Partition
    Honda, Katsuhiro
    Hakui, Yoshiki
    Ubukata, Seiki
    Notsu, Akira
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2020, 24 (01) : 40 - 47
  • [10] Semi-supervised fuzzy co-clustering algorithm for document categorization
    Yan, Yang
    Chen, Lihui
    Tjhi, William-Chandra
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 34 (01) : 55 - 74