On the existence and uniqueness of the solution to the Navier-Stokes equations

被引:2
|
作者
Tang, XJ [1 ]
机构
[1] SICHUAN UNIV,DEPT MATH,CHENGDU 610064,PEOPLES R CHINA
关键词
Navier-Stokes equations; weak solution; mixed boundary problem;
D O I
10.1016/S0252-9602(18)30056-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss the mixed boundary problem (1) - (3) of the Navier-Stokes equations for the flow of an incompressible viscous fluid in a bounded domain. We prove that when g is an element of L (infinity) (Q), phi is an element of C-1 (Gamma(1) X [0, t(1)]), and psi is an element of L(1) (Gamma(z) X [0, t(1)]), there exists a weak solution of (1) - (3) t and when u is an element of L(2) (0, t(1) ; H-s (Omega)), T is an element of L(2) (0, t(1) ; H-s (Omega)), the weak solution is unique, if it exists.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 50 条