A NOTE ON HIGHER-ORDER AVERAGING

被引:2
|
作者
VERHULST, F
机构
关键词
D O I
10.1016/0020-7462(88)90030-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:341 / 346
页数:6
相关论文
共 50 条
  • [1] HIGHER-ORDER AVERAGING FOR NONPERIODIC SYSTEMS
    SAENZ, AW
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (10) : 2679 - 2694
  • [3] A note on higher-order Bernoulli polynomials
    Kim, Dae San
    Kim, Taekyun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [4] A NOTE ON THE LOGIC OF (HIGHER-ORDER) VAGUENESS
    HECK, RG
    [J]. ANALYSIS, 1993, 53 (04) : 201 - 208
  • [5] A note on higher-order symmetric duality
    Gulati, T. R.
    Verma, Khushboo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 553 - 558
  • [6] A note on identity and higher-order quantification
    Urbaniak, Rafal
    [J]. AUSTRALASIAN JOURNAL OF LOGIC, 2009, 7 : 48 - 55
  • [7] A note on higher-order Bernoulli polynomials
    Dae San Kim
    Taekyun Kim
    [J]. Journal of Inequalities and Applications, 2013
  • [8] A Note on Higher-Order Gauss Maps
    Di Rocco, Sandra
    Jabbusch, Kelly
    Lundman, Anders
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2017, 66 (01) : 21 - 35
  • [9] Higher-order approximations in the averaging principle of multiscale systems
    Li, Xin
    Wang, Qiuyu
    Xie, Longjie
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 142
  • [10] Higher-order averaging for DC-DC converters
    Devos, Thomas
    Martin, Philippe
    [J]. 45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 4101 - 4107