RANDOM POLYTOPES IN SMOOTH CONVEX-BODIES

被引:46
|
作者
BARANY, I
机构
[1] The Mathematical Institute of the Hungarian Academy of Sciences
关键词
D O I
10.1112/S0025579300006872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K subset-of R(d) be a convex body and choose points x1, x2,..., x(n) randomly, independently, and uniformly from K. Then K(n) = conv {x1,..., x(n)} is a random polytope that approximates K (as n --> infinity) with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K - vol K(n) when K is a smooth convex body. Moreover, this result is extended to quermassintegrals (instead of volume).
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条